Океан в капле воды, или Вся техника в одной стекляшке

учета отражений на концах: в одну сторону энергия будет переноситься электронами, а обратно – волной. И мы получим генератор. Но можно ли сделать так, чтобы электроны отдавали энергию волне, спешащей навстречу им? Представьте себе, что электронный пучок летит с одной стороны от металлического экрана с окнами, а волна бежит с другой. Пусть электронный сгусток, пролетая мимо окна, увидел там тормозящее поле, притормозился, отдал часть энергии и полетел дальше. У следующего окна он опять увидел тормозящее поле и опять пострадал. Вы сразу же видите, что таким способом можно усиливать волну, не обязательно имеющую ту же скорость, что и электронный сгусток. Важно лишь, чтобы электрон, пробегая мимо окон, видел в них одинаковые фазы колебаний.

Сгусток будет в следующем окне видеть не то место волны, с которым взаимодействовал в предыдущем окне, а другое. Но что с того? Он будет отдавать энергию, а волна будет усиливаться. При этом электрону безразлично, куда летела эта волна – с ним или навстречу.

Конструирование – всегда компромисс. Если больше мощность – то меньше диапазон частот, а если нет – то короче срок службы или дороже прибор. И так одно за другое, другое за третье, пятое и девяносто девятое... При определенной длине волны резонаторы в клистроне и спираль в ЛБВ должны иметь определенные размеры. Какая-то доля электронного пучка перехватывается сеткой в зазоре резонатора или спиралью. Пучок перехватывается – мощность выделяется – деталь нагревается – металл испаряется или плавится. Если плавится, то все ясно. А если испаряется, то пары оседают или на изоляторах, превращая их в проводники, или на катоде, изменяя его состав до потери работоспособности.

Что делать? Во-первых, можно искать конструкции, в которых меньше плотность мощности, выделяющейся на поверхностях электровакуумных приборов. Ну конечно, электронный пучок не должен перехватываться тем, чем не должен. Но при попытке сжать пучок посильнее он теряет ламинарность. Такой пучок не удается сильно затормозить (рекуперировать) на коллекторе, кпд прибора падает. Не будем разматывать эти клубки до девяносто девятого слоя, но поверьте – цифра не преувеличена. В лампе бегущей волны все связано одно с другим. Как и в других приборах. Жизнь вообще так устроена. И не ситуация в ЛБВ – самая трудная для понимания.

Прибор, называемый магнетроном, был изобретен... о, это длинная история! Дело в том, что в отличие от ЛБВ и клистрона, изобретение магнетрона состояло из нескольких этапов – один элемент, потом второй, третий и так далее. А.У. Холл – 1921 год, Яга и Окабе – 1928 год (это тот самый Яга, который «антенна Уда-Яги» – посмотрите на крышу любого дома), Г. Бут и Дж. Рэндалл – 1939 год, наконец – Н.Ф. Алексеев, Д.Е. Маляров и В.П. Илясов в 1939 году (еще раз о приоритете – во многих книгах про последнего не упоминают, в некоторых – неправильно пишут его фамилию). Некоторые ЛБВ интересны тем, что изготавливаются лишь в нескольких десятках экземпляров (ЛБВ для спутников связи), а магнетрон интересен тем, что это первый действительно массовый СВЧ-прибор. Ибо те магнетроны, которые используются в СВЧ-печах, впервые начали выпускаться в Японии миллионами. Традиционная японская кухня предпочитает варить, парить и тушить, а не жарить. Румяная корочка (содержащая, между прочим, канцерогенные продукты термолиза низкосортных жиров) – не ее цель. Так вот, СВЧ-печи как раз и делают нечто похожее на варку, парку и тушение, поскольку электромагнитная волна сверхвысокой частоты поглощается всем объемом сразу.

Магнетрон – это прибор со «скрещенными полями»: с магнитным и электрическим полями, перпендикулярными друг другу. Электрон вылетает из катода с маленькой скоростью и начинает двигаться к аноду. Пока электрон пролетел мало и скорость его мала, сила, действующая со стороны магнитного поля, тоже мала, и электрон летит почти по прямой. По мере приближения к аноду скорость электрона растет, сила Лоренца увеличивается, траектория изгибается. При малой индукции магнитного поля электрон отклонится от прямой, но анода достигнет. При большой индукции поля траектория электрона анода не достигает, он описывает кривую и возвращается к катоду, уменьшив свою скорость до нуля – согласно закону сохранения энергии.

Но если в объеме прибора возбуждаются колебания электромагнитного поля, то есть происходит генерация, то энергия, которая перекачивается в поле, должна отбираться от электронов. Значит, часть из них не возвращается к катоду – у них не хватает на это энергии. Они падают на анод, а полученную от постоянного электрического поля энергию частично отдают на генерацию электромагнитного поля, а частично – аноду. В лампе бегущей волны электрон падает на участке от катода до начала замедляющей системы. Падает в том же смысле, в котором падает камень, оторвавшийся от вертикальной скалы – двигаясь по силе, уменьшая потенциальную энергию и увеличивая кинетическую. Электроны входят в замедляющую систему, набрав скорость, и уже в ней отдают кинетическую энергию электромагнитной волне.

В магнетроне поведение электронов описывается двумя процессами – сортировкой и фазировкой. Электрон, который вышел из катода в такой момент, что потом он должен отдавать энергию волне, падает на анод, падает и отдает энергию. Электрон, который вышел из катода в такой момент, что волна должна отдавать ему энергию, тут же завершает свою биографию, врезавшись в катод. Это и есть сортировка – поэтому большинство электронов отдает энергию волне, а не забирают ее у нее. Кроме того, электроны «фазируются», собираются в сгустки, как в ЛБВ.

В работающем магнетроне в каждый момент времени заряды и потенциалы участков поверхности между входами в резонаторы чередуются. При этом возникает электрическое поле, которое направлено от положительно заряженных участков к отрицательным. А поскольку магнитное поле перпендикулярно электрическому, возникает сила Лоренца, которая ускоряет и тормозит электроны, попавшие в зоны действия по-разному направленного электрического поля и, следовательно, собирает (замечаете аналогию с работой ЛБВ?) электроны в сгустки, протянутые от катода к аноду и называемые «спицами».

Классический магнетрон имеет цилиндрический катод и цилиндрический, коаксиальный ему анодный блок с резонаторами – то есть замедляющая система свернута в кольцо и электронные траектории тоже замкнуты. Поэтому магнетрон – генераторный прибор: сигнал в нем «возвращается». Но, разомкнув или одно, или другое, или и то и это вместе (итого 4 варианта), можно превратить магнетрон в усилитель. Не говоря уж о том, что магнетрон может работать на прямой и на обратной волне (как ЛБВ) и может использовать сформированный своим катодом или введенный извне («инжектированный») электронный пучок. Худо-бедно 4×2×2×2 = 32 варианта приборов со скрещенными электрическим и магнитным полем. И не все они реализованы...

Еще одно важное отличие магнетрона от клистрона и ЛБВ – «переплетенность». В клистроне все отдельно – катод, входной резонатор, дрейфовое пространство, выходной резонатор и коллектор. В ЛБВ средние три элемента соединены в спирали: входная ее часть в основном модулирует пучок, выходная в основном снимает сигнал с пучка и вся она – пролетное пространство. В магнетроне переплетено все – все его сечения эквивалентны, все они содержат кусочек катода, кусочек пролетного пространства, коллектора и замедляющей системы.

О переплетении работы и жизни рассказывает единственная художественная книга, названная именем электровакуумного прибора. Книга «Магнетрон» была написана в 1957 году физиком Г.И. Бабатом и писательницей А.Л. Гарф. Это книга о временах, когда перед физиками Америки и Англии стоял вопрос: как сделать, чтобы на экранах радаров были видны перископы германских нацистских подводных лодок? Сейчас это вообще не вопрос – длина волны, которую генерирует магнетрон, должна быть меньше диаметра перископа. А тогда этот вопрос стоил – и не «64 тысячи долларов», как пошутил персонаж Ст. Лема, а десятки тысяч жизней.

Но откуда в магнетроне взялось электромагнитное поле, почему возникла генерация? Как вы уже знаете, электронные сгустки, пролетая мимо резонаторов, вызывают появление в металле наведенного тока, а в резонаторе – поля. Если период выступов подобран правильно, то поля, возникающие при пролете сгустков, складываются, поле усиливается, и в итоге мы получаем мощную сверхвысокочастотную электромагнитную волну. Часть электронов, эмитированных катодом, возвращаются на него, причем имея вполне приличную скорость. Возврат таких электронов на катод влечет его нагрев. Иногда мощность, поступающая на катод, оказывается так велика, что его приходится не греть, а охлаждать. Электроны, попавшие на катод, выбивают из него вторичные электроны. Этот вид эмиссии называется вторичной электронной эмиссией. Часто вторичная электронная эмиссия оказывается достаточной, чтобы магнетрон работал только за ее счет.

Конструкторских и технологических проблем в магнетроне много. Одна из них – проблема обеспечения малых размеров и малых допусков (то есть точных размеров). Эта проблема общая для многих ЭВП, но, согласитесь, намотать спираль диаметром 1 мм для ЛБВ проще, чем сделать анодный блок для магнетрона диаметром тоже 1 мм. Применяют пайку (для резонаторов лопаточного типа), выдавливание, электроискровую и электрохимическую обработку, резку и сверление электронным лучом и, наконец, все традиционные виды металлообработки. Выдавливанием удается делать системы с толщиной лопаток 0,1 мм, а допуски на размеры при электроискровой обработке составляют 1 мкм. Когда же размеры анодного блока становятся меньше 1 мм, идут, например, на такое ухищрение – делают отдельные пластины из фольги толщиной 10...20 мкм и складывают анодный блок из таких пластин. Отверстия же сложной формы в фольге делают методами, заимствованными из полупроводниковой техники (например, фотолитографией). Впрочем, все это относится скорее к технологии, и скоро мы к ней обратимся.

Выше мы описали историю электровакуумных приборов и их конструкции, доведя наше повествование до возникновения транзисторов. Теперь посмотрим, как реагировали лампы на транзисторную экспансию, и расскажем о технологии ламп, их сегодняшнем состоянии и перспективах.

Первые транзисторы были не очень надежные, с плохими параметрами, но маленькие по сравнению с лампами. Кроме того, их можно было изготавливать «групповыми методами» – сразу много приборов. А когда нужны миллионы приборов, технологичность может стать определяющим фактором. Посмотрим, как лампы ответили на вызов.

Реакция ламп на появление транзисторов, улучшение их параметров и расширение области их применения носила троякий характер. Первый, самый простой путь – уступить место. И во многих случаях так и происходило. Сегодня, после полувека совместного существования, можно сказать, что транзисторы вытеснили лампы из области низких частот и малых мощностей – за одним исключением. В области сверхвысококачественного воспроизведения звука, «High End», лампы все-таки оказались лучше транзисторов. Им свойственна высокая линейность характеристик, позволяющая уменьшить искажения. Сегодня этот рынок не слишком велик, но существует он стабильно.

Второй путь – уменьшение габаритов. Путь к этому открыла упомянутая выше «штабельная лампа». Позже фирма «General Electric» создала лампы диаметром и высотой около 1 мм. Электроды в этих лампах делались из титана, который хорошо спаивается с керамикой. Лампа состояла из чередующихся керамических и титановых дисков: керамические служили изоляторами и определяли зазор между электродами, а титановые диски одновременно выполняли роль выводов и несли в своей средней части электроды лампы. В 1959 году фирма «RCA» начала массовый выпуск прибора, названного «нувистором» (от nuevo vista – новый вид). В этих лампах все электроды крепились пайкой к керамической пластине, которая впаивалась в металлический стаканчик, служивший оболочкой. Сборка была механизирована, лампы успешно работали до температуры 550 по Цельсию.

Электронным лампам оставался последний шаг на пути уменьшения количества деталей, и они его сделали. Посмотрим, сколько деталей в ее конкуренте – транзисторе? А это смотря в каком. Если транзистор является частью микросхемы, то деталей в нем нет ни одной – так же как нет отдельных деталей во всей микросхеме. Роль проводников выполняют напыленные пленки металлов, роль изоляторов – пленки окислов. Но этим способом можно изготовить и лампу. Первая попытка сделать лампу с уменьшенным количеством деталей посредством напыления проводящих пленок основывалась на конструкции штабельной лампы. Пленки, выполнявшие роль электродов, напылялись на керамические пластины. Однако в лампе еще были отдельные детали, хотя серьезный шаг по пути избавления от них был сделан.

Следующий вариант был уже чисто пленочный. Электроны летели с пленки-катода на пленку-анод над пленкой-сеткой. Но наиболее эффективной оказалась некая «смесь» штабельной лампы и планарной. Анодная пленка нанесена на одну керамическую пластину, а катодная и сеточная на другую. Такие лампы были созданы в 1977 году в Лос-Аламосской лаборатории. Они способны работать свыше 10 000 часов при температуре 500 по Цельсию и могут размещаться на подложках с плотностью 30 штук на квадратном миллиметре. Наиболее острой проблемой этих ламп является выбор материалов – при таких температурах керамика начинает понемногу взаимодействовать с металлами, да и сопротивление у керамики уже несколько уменьшается.

Пленочная технология была успешно применена и в мощных лампах. А именно: оказалось возможным не делать сетку отдельно, а наносить на катод изолирующие полосочки, а на них – проводящие полоски, выполняющие роль сетки. Зазор катод-сетка в этом случае получается малым (что увеличивает крутизну лампы) и стабильным. Так пленочная технология, которая получила широкое распространение благодаря развитию полупроводниковой техники, способствовала улучшению параметров электронных ламп.

Но, тем не менее, тягаться с транзисторами в области малых мощностей нувисторы не смогли, а остальные варианты не стали массовыми. Можно, конечно, пофантазировать насчет Пентиума на лампах, но – жизнь решила иначе. Впрочем, мне кажется, что ничего особо страшного не произошло бы – позже были созданы холодные катоды, лампы смогли работать бы без нагрева, пленочная технология позволила бы получить габариты в десятки микрон. Ну и был бы процессор размером с пакет молока... Между прочим, переход с ламп на транзисторы повлиял на стиль проектирования схем – лампы могли осуществлять сложные преобразования сигнала, на которые транзисторы, которые являются с точки зрения ламп «всего лишь» триодами, не способны. Сложные функции пришлось осуществлять за счет сложной схемы. Возможно, это подтолкнуло развитие цифровой техники.

Третий путь, по которому может пойти техника – гибридизация приборов и решений. Скрестить электровакуумный прибор с полупроводниковым можно, в принципе, несколькими способами, и некоторые из них были реализованы. Можно создать электронный пучок в вакууме «электровакуумными» методами, но бомбардировать им не анод, а полупроводник, вводя в него носители заряда. Поскольку энергия электронного пучка может быть очень велика, то носителей заряда в полупроводнике на каждый падающий электрон образуются тысячи. Другой вариант гибридного прибора – это вакуумный полевой триод. Он похож на полевой транзистор, только затвор отделен не твердым диэлектриком, а вакуумом. Между прочим, газоразрядный прибор тоже можно «скрестить» с вакуумным, и тоже несколькими способами.

Чтобы лампа реально существовала и работала, мало придумать принцип ее работы и конструкцию. Лампу, как и любую вещь, надо сделать. Когда все упирается в технологию? Довольно часто. Особенно если попытаться сделать что-то новое – ЭВП рекордной мощности, КПД или частоты. Оказывается, что либо нельзя сделать такую конструкцию, как хочется, либо сделать можно, но нет материалов, при использовании которых все это сможет работать. Выход из положения – создание новой технологии или новых материалов.

Собственно технология начинается с исходных материалов. Своих материалов требует любая область техники; а специфика состоит в том, какие именно материалы и с какими именно свойствами требуются. Например, металл А, особо чистый по примесям В, С и Д – это обычная формулировка. Но А, В и т.д. – в каждой области свои. Электротехнике страшны те примеси к меди, которые понижают электропроводность – P и Si. Технике электронных ламп страшны примеси Cd, Zn и O к меди, на электропроводность не влияющие. Ниже мы объясним, почему.

Есть требования и по структуре – материал может иметь кристаллическую структуру, и в этом случае важно, какого размера эти кристаллы и как они расположены. Причем как примеси, так и структура могут быть важны не только для работы лампы, но и для процессов изготовления: примесь (S в меди) или структура (длинные одинаково ориентированные кристаллы), которые делают металл хрупким, не дадут применить пластическое деформирование (гибку, выдавливание).

Проблемой исходных материалов для техники электронных ламп занимались целые институты, были опубликованы тысячи статей, есть и книги на эту тему. Все это не аргумент, – скажете вы, – мало ли кто занимался ерундой, мало ли дурацких книг было издано. Но в крупнейших электронных фирмах были специальные металлургические отделы. Те, кто делал лампы, считали необходимым иметь свою собственную металлургию.

Многие технологические проблемы сводятся к выбору материала. Причем ситуация обычно устроена так, что материал, который способен выдерживать более высокие температуры (например, тугоплавкие и прочные при высоких температурах молибден и вольфрам), будет и нагреваться сильнее (например, из-за плохой проводимости и плохой теплопроводности). Чистых металлов в природе не так уж много, но сплавов – не счесть. Вдобавок есть еще композитные материалы – например, смесь (не сплав) вольфрама и меди – сочетающие


29-04-2015, 05:08


Страницы: 1 2 3 4 5
Разделы сайта