Регуляция экскреции воды, осморегуляция
Водно-солевой обмен– совокупность процессов поступления воды и солей (электролитов) в организм, их всасывания, распределения во внутренних средах и выделения. Суточное потребление человеком воды составляет около 2,5 л, из них около 1 л он получает с пищей. В организме человека 2/3 общего количества воды приходится на внутриклеточную жидкость и 1/3 – на внеклеточную. Часть внеклеточной воды находится в сосудистом русле (около 5% от массы тела), большая же часть внеклеточной воды находится вне сосудистого русла, это межуточная (интерстициальная), или тканевая, жидкость (около 15% от массы тела). Кроме того, различают свободную воду, воду, удерживаемую коллоидами в виде так называемой воды набухания, т.е. связанную воду, и конституционную (внутримолекулярную) воду, входящую в состав молекул белков, жиров и углеводов и освобождающуюся при их окислении. Разные ткани характеризуются различным соотношением свободной, связанной и конституционной воды. За сутки почками выводится 1–1,4 л воды, кишечником – около 0,2 л; с потом и испарением через кожу человек теряет около 0,5 л, с выдыхаемым воздухом – около 0,4 л.
Системы регуляции водно-солевого обмена обеспечивают поддержание общей концентрации электролитов (натрия, калия, кальция, магния) и ионного состава внутриклеточной и внеклеточной жидкости на одном и том же уровне. В плазме крови человека концентрация ионов поддерживается с высокой степенью постоянства и составляет (в ммоль/л): натрия – 130–156, калия – 3,4–5,3, кальция – 2,3–2,75 (в т.ч. ионизированного, не связанного с белками – 1,13), магния – 0,7–1,2, хлора – 97–108, бикарбонатного иона – 27, сульфатного иона – 1,0, неорганического фосфата – 1–2. По сравнению с плазмой крови и межклеточной жидкостью клетки отличаются более высоким содержанием ионов калия, магния, фосфатов и низкой концентрацией ионов натрия, кальция, хлора и ионов бикарбоната. Различия в солевом составе плазмы крови и тканевой жидкости обусловлены низкой проницаемостью капиллярной стенки для белков. Точная регуляция водно-солевого обмена у здорового человека позволяет поддерживать не только постоянный состав, но и постоянный объем жидкостей тела, сохраняя практически одну и ту же концентрацию осмотически активных веществ и кислотно-щелочное равновесие.
Регуляция водно-солевого обмена осуществляется при участии нескольких физиологических систем. Сигналы, поступающие от специальных неточных рецепторов, реагирующих на изменение концентрации осмотически активных веществ, ионов и объема жидкости передаются в ЦНС, после чего выделение из организма воды и солей и их потребление организмом меняется соответствующим образом. Так, при увеличении концентрации электролитов и уменьшении объема циркулирующей жидкости (гиповолемии) появляется чувство жажды, а при увеличении объема циркулирующей жидкости (гиперволемии) оно уменьшается. Увеличение объема циркулирующей жидкости за счет повышенного содержания воды в крови (гидремия) может быть компенсаторным, возникающим после массивной кровопотери. Гидремия представляет собой один из механизмов восстановления соответствия объема циркулирующей жидкости емкости сосудистого русла. Патологическая гидремия является следствием нарушения водно-солевого обмена, например при почечной недостаточности и др. У здорового человека может развиться кратковременная физиологическая гидремия после приема больших количеств жидкости. Выведение воды и ионов электролитов почками контролируется нервной системой и рядом гормонов. В регуляции водно-солевого обмена участвуют и вырабатываемые в почке физиологически активные вещества – производные витамина D3, ренин, кинины и др.
Содержание натрия и организме регулируется в основном почками под контролем ЦНС через специфические натриорецепторы. реагирующие на изменение содержания натрия в жидкостях тела, а также волюморецепторы и осморецепторы, реагирующие на изменение объема циркулирующей жидкости и осмотического давления внеклеточной жидкости соответственно. Натриевый баланс в организме контролируется и ренин-ангиотензинной системой, альдостероном, натрийуретическими факторами. При уменьшении содержания воды в организме и повышении осмотического давления крови усиливается секреция вазопрессина (антидиуретического гормона), который вызывает увеличение обратною всасывания воды в почечных канальцах. Увеличение задержки натрия почками вызывает альдостерон, а усиление выведения натрия – натрийуретические гормоны, или натрийуретические факторы. К ним относятся атриопептиды, синтезирующиеся в предсердиях и обладающие диуретическим, натрийуретическим действием, а также некоторые простагландины, уабаинподобное вещество, образующееся в головном мозге, и др.
Основным внутриклеточным кучным осмотически активным катионом и одним из важнейших потенциал образующих ионов является калий. Мембранный потенциал покоя, т.е. разность потенциалов между клеточным содержимым и внеклеточной средой, сознается благодаря способности клетки активно с затратой энергии поглощать ионы К+ из внешней среды в обмен на ионы Na+ (так называемый К+, Na+-насос) и вследствие более высокой проницаемости клеточной мембраны для ионов К+ чем для ионов Na+. Из-за высокой проницаемости неточной мембраны для ионов К+ дает небольшие сдвиги в содержании калия в клетках (в норме это величина постоянная) и плазму крови ведут к изменению величины мембранного потенциала и возбудимости нервной и мышечной ткани. На конкурентных взаимодействиях между ионами К+ и Na+, а также К+ и Н+ основано участие калия в поддержании кислотно-щелочного равновесия в организме. Увеличение содержания белка в клетке сопровождается повышенным потреблением ею ионов К+. Регуляция обмена калия в организме осуществляется ц.н.с. при участии ряда гормонов. Важную роль в обмене калия играют кортикостероиды, в частности альдостерон, и инсулин.
При дефиците калия в организме страдают клетки, а затем наступает гипокалиемия. При нарушении функции почек может развиваться гиперкалиемия, сопровождаемая тяжелым расстройством функций клеток и кислотно-щелочного состояния. Нередко гиперкалиемия сочетается с гипокальциемией, гипермагниемией и гиперазотемией.
Состояние водно-солевого обмена в значительной степени определяет содержание ионов Cl – во внеклеточной жидкости. Из организма ионы хлора выводятся в основном с мочой. Количество экскретируемого хлорида натрия зависит от режима питания, активной реабсорбции натрия, состояния канальцевого аппарата почек, кислотно-щелочного состояния и др. Обмен хлоридов тесно связан с обменом воды: уменьшение отеков, рассасывание транссудата, многократная рвота, повышенное потоотделение и др. сопровождаются увеличением выведения ионов хлора из организма. Некоторые диуретики с салуретическим действием угнетают реабсорбцию натрия в почечных канальцах и вызывают значительное увеличение экскреции хлора с мочой. Многие заболевания сопровождаются потерей хлора. Если его концентрация в сыворотке крови резко снижается (при холере, острой кишечной непроходимости и др.), прогноз заболевания ухудшается. Гиперхлоремию наблюдают при избыточном потреблении поваренной соли, остром гломерулонефрите, нарушении проходимости мочевых путей, хронической недостаточности кровообращения, гипоталамо-гипофизарной недостаточности, длительной гипервентиляции легких и др.
При ряде физиологических и патологических состояний часто бывает необходимо определить объем циркулирующей жидкости. С этой целью в кровь вводят специальные вещества (например, краситель синий Эванса или меченный альбумин). Зная количество вещества, введенного в кровоток, и определив через некоторое время его концентрацию в крови, рассчитывают объем циркулирующей жидкости. Содержание внеклеточной жидкости определяют с помощью веществ, не проникающих внутрь клеток. Общий объем воды в организме измеряют по распределению «тяжелой» воды D2O, воды, меченной тритием [рН] 2О (ТНО), или антипирина. Вода, в состав которой входит тритий или дейтерий, равномерно смешивается со всей водой, содержащейся в теле. Объем внутриклеточной воды равен разности между общим объемом воды и объемом внеклеточной жидкости.
Осмоляльность плазмы крови и внеклеточной жидкости определяется главным образом натрием, поскольку натрий является основным внеклеточным катионом, и 85% эффективного осмотического давления зависит от натрия с сопутствующими анионами. На долю остальных осмотически активных веществ приходится примерно 15%, и регуляция осмоляльности жидкостей внутренней среды фактически сводится к поддержанию постоянства соотношения воды и натрия. Экскреция воды почкой регулируется антидиуретическим гормоном нейрогипофиза (АДГ) и в конечном итоге определяется теми факторами, которые влияют на скорость синтеза и секреции АДГ и его эффект в почке.
Сенсорный механизм антидиуретической системы представлен осморецепторами с высокой чувствительностью к отклонению осмоляльности плазмы крови. После открытия английским физиологом Е. Вернеем осмочувствительных элементов в гипоталамусе дальнейший прогресс в изучении локализации и функции центральных осморецепторов был обусловлен развитием электрофизиологических исследований и радиоиммунного способа определения концентрации АДГ. В опытах на различных животных было установлено, что при введении через катетер в сонную артерию или непосредственно в мозг через микроэлектрод 2%-ного раствора хлорида натрия увеличивается активность отдельных нейронов, расположенных в зоне III желудочка. Такие нейроны располагались в области супраоптического и паравентрикулярного ядер, то есть скопления крупноклеточных нейронов над перекрестом зрительного тракта и около стенки III желудочка, в которых осуществляется синтез АДГ – стимулятора реабсорбции воды в почке. Осморецепторы мозга сигнализируют об отклонениях от нормального уровня осмоляльности крови, притекающей к мозгу.
Однако в системе, регулирующей баланс воды, мониторинг осмотического равновесия обеспечивается не только осморецепторами мозга. Идея о том, что осморецепторы могут локализоваться не только в мозгу, но и в других тканях, прежде всего в печени, куда притекает кровь от желудочно-кишечного тракта, принадлежит А.Г. Гинецинскому. Применение тонких сосудистых зондов, с помощью которых в кровоток вводили гипертонические растворы в таком количестве, что осмоляльность крови отклонялась всего на 2 – 5% только в исследуемом органе, но не изменялась в общем кровотоке, позволило выявить осмочувствительные элементы практически во всех висцеральных органах и в скелетных мышцах конечностей. Наиболее активной оказалось осморецептивное поле печени. Электрофизиологическим методом было зарегистрировано повышение импульсной активности в тончайших нервных волокнах, идущих от печени в составе блуждающего нерва и задних корешков мозга в центральную нервную систему Антидиуретическая реакция, то есть резкое ограничение выделения жидкости почками в ответ на осмотическое раздражение различных зон, имеет рефлекторную природу, так как разрыв нервных связей, идущих в мозг к гипоталамическим ядрам, или перерезка ножки гипофиза, осуществляющей нервную связь гипоталамических ядер с задней долей гипофиза, где АДГ выделяется в кровь, предотвращают развитие антидиуреза.
Антидиуретический гормон – основной гормон, регулирующий реабсорбцию воды в почечных канальцах. Второе название этого гормона – вазопрессин, так как он принимает участие в регуляции сосудистого тонуса, стимулируя сокращение гладких мышц артерий и повышая кровяное давление. В последние годы установлено, что эффекты АДГ-вазопрессина весьма разнообразны вплоть до участия в механизмах памяти. Однако, несмотря на множественность действия этого гормона, у млекопитающих и человека наиболее ярко проявляется его роль в регуляции осмоляльности жидкостей внутренней среды. За последние десятилетия были изучены не только структура и свойства этого пептидного гормона, состоящего из 9 аминокислот, но также структура гена, кодирующего этот гормон и пути его биосинтеза.
АДГ синтезируется в нейросекреторных клетках гипоталамуса (супраоптическом и паравентрикулярном ядрах), по отросткам этих клеток с током аксоплазмы перемещается в заднюю долю гипофиза и из окончаний нервных отростков попадает в кровь. При раздражении осморецепторов происходят рефлекторная активация нейронов и выбрасывание в кровь АДГ. В обычных условиях АДГ присутствует в плазме крови в очень низкой концентрации (10 пикомолей на 1 л). Но почки чрезвычайно чувствительны к АДГ, и требуются лишь небольшие изменения скорости секреции вазопрессина (2–5 пикограмм в минуту на 1 кг массы тела) для проявления его эффекта. С током крови АДГ достигает клеток конечных отделов почечных канальцев и взаимодействует с белком-рецептором, встроенным в мембрану (типа V2). В других клетках-мишенях действует рецептор V1 и используются иные внутриклеточные механизмы передачи гормонального сигнала. V2-рецептор сопряжен с ферментом аденилатциклазой через особую ГТФ-зависимую единицу. Это приводит к активации образования вторичного посредника – циклического аденозинмонофосфата (цАМФ), к активации специфического фермента протеинкиназы, и завершается цепь встраиванием в мембрану клетки, обращенную в просвет канальца, особого белка аквапорина. Аквапорин образует в липидной гидрофобной мембране поры, проницаемые для воды, и в результате вода диффундирует в интерстициальное пространство, окружающее собирательные трубки. При этом проявляется антидиурез – резкое ограничение выведения воды из организма.
Уровень секреции АДГ находится под непосредственным влиянием изменений не только осмоляльности плазмы крови, но и объема циркулирующей крови и уровня кровяного давления. Впервые в 1956 году Дж. Генри и О. Гауэр в экспериментах на собаках установили, что повышение давления в левом предсердии приводит к увеличению выделения воды почками. Эти данные, а также последующие эксперименты послужили основой для заключения, что рецепторы растяжения левого предсердия, реагирующие на объем притекающей к сердцу крови (волюморецепторы), играют важную роль в секреции АДГ, вызывая торможение нейронов супраоптического ядра (рис. 2). В дальнейшем изучение реакции человека на изменение объема крови в области грудной клетки в результате усиления ее притока от нижних конечностей привлекло особое внимание в связи с развитием космической биологии и медицины. Переход от земной гравитации к невесомости приводит к устранению действия силы тяжести на кровь, находящуюся в нижних конечностях и в брюшной полости; она перераспределяется в вышележащие части тела, переполняя сосуды грудной полости и головы. Это приводит к растяжению предсердий, рефлекторному подавлению секреции АДГ и адекватной физиологической реакции – усилению почечной экскреции жидкости, приводящей к нормализации уровня кровяного давления. Напротив, при возвращении из космического полета недонаполнение сосудов грудной полости приводит к стимуляции секреции АДГ и усилению реабсорбции воды почкой. Нормализация уровня гормона в плазме крови происходила у космонавтов в течение недели и зависела от длительности полетов. Моделирование невесомости у испытуемых при погружении в воду до уровня шеи, при так называемой иммерсии, дало возможность проследить в динамике изменение объема крови и концентрации АДГ в крови. Данные, полученные при исследовании космонавтов и испытуемых, полностью совпали.
Взаимодействие осмотических и объемных стимулов обеспечивает адекватные для ситуации изменения экскреции воды почкой. В нормальных условиях главной детерминантой секреции АДГ является осмотическая концентрация внеклеточной жидкости. При небольших изменениях объема крови и смещениях осмоляльности в первую очередь выравнивается осмотическая концентрация крови. При значительных изменениях объема внутрисосудистой жидкости независимо от направленности осмоляльности крови соподчиненность систем осмо- и волюморегуляции изменяется и включаются прежде всего механизмы, способствующие восстановлению объема.
Заболевания, вызванные нарушением вазопрессина
Несахарный диабет – расстройство обмена воды, вызванное первичным нарушением выработки АДГ при инфекционном или травматическом поражении гипоталамуса или нарушении проходимости портальной системы гипофиза опухолью. Для восстановления нормального содержания жидкости в организме больные, побуждаемые чувством жажды, выпивают большие количества жидкости. Недостаточность АДГ бывает полной или частичной, что определяет степень полидипсии и полиурии. Для дифференциации недостаточной продукции АДГ (несахарный диабет) от почечной устойчивости к АДГ (почечный несахарный диабет) или избыточного употребления воды (психогенная полидипсия) проводят динамические тесты. При проведении теста с ограничением воды у больных с выраженной недостаточностью АДГ отмечается повышение осмолярности плазмы, а осмолярность мочи обычно остается ниже ее. После введения вазопрессина таким больным осмолярность мочи быстро повышается. При нерезко выраженной недостаточности АДГ и полиурии осмолярность мочи в ходе теста может быть несколько выше осмолярности плазмы, а реакция на вазопрессин ослаблена.
Постоянно низкие уровни АДГ в плазме свидетельствуют о выраженном нейрогенном несахарном диабете, субнормальные уровни в сочетании с гиперосмолярностью плазмы – о частичном нейрогенном несахарном диабете.
Повышение секреции АДГ наблюдается при синдроме неадекватной продукции вазопрессина или синдроме Пархона. Синдром Пархона – самый частый вариант нарушения секреции АДГ, характеризующийся олигурией, отсутствием жажды, наличием общих отеков, нарастанием массы тела. Важно отличать синдром неадекватной продукции вазопрессина от других состояний: застойной сердечной недостаточности, почечной недостаточности, дефицита глюкокортикоидов, гипотиреоза, приема лекарств, стимулирующих АДГ. У больных с синдромом неадекватной продукции вазопрессина обычно выявляют снижение натрия в плазме, высокую осмоляльность мочи по отношению к осмоляльности плазмы, снижение экскреции в ответ на водную нагрузку.
Синдром неадекватной продукции вазопрессина (СНПВ) Швартца – Бартерапредставляет собой клинический синдром, характеризующийся независимой от факторов физиологической регуляции гиперсекрецией вазопрессина (АДГ) с формированием гипонатриемической (гипоосмолярной) гипергидратации. Избыток вазопрессина в сочетании с неограниченным приемом жидкости приводит к антидиурезу (задержка воды), выделению концентрированной мочи, гипонатриемии.
Синдром неадекватной продукции вазопрессинаразвивается всегда вторично по отношению к другим заболеваниям или при приеме медикаментов. Первичная гиперпродукция вазопрессина в настоящее время не описана.
При синдроме изолированного гипофизапрекращается секреция всех тропных гормонов гипофиза с развитием вторичного гипогонадизма, гипотериоза, гипокортицизма, недостаточности роста. Патогномоничным для синдрома изолированного гипофиза феноменом является гиперпролактинемия.
Эктопическая секреция АДГ встречается при самых различных опухолях APUD-системы. Наиболее часто эктопическая секреция АДГ вызывает злокачественный бронхогенный рак легкого, злокачественные опухоли поджелудочной, вилочковой желез, двенадцатиперстной кишки.
При проведении исследований необходимо учитывать, что при длительном хранении происходит значительный распад АДГ. Пробы плазмы не должны находиться при комнатной температуре.
Регуляция выделения натрия почкой
Регуляция экскреции натрия почкой является многофакторной и очень сложной. Два основных механизма, контролирующих выделение натрия почкой, в изучении которых в последние годы достигнут существенный прогресс: 1) ренин-ангиотензин-альдостероновая система, регулирующая реабсорбцию натрия почкой, и 2) семейство пептидов, стимулирующих усиленное выделение натрия.
Ренин-ангиотензин-альдостероновая система (РААС) включает следующие элементы. Ренин – протеолитический фермент, секретируемый почками в кровь, отщепляет от фрагмента a2-глобулина плазмы короткий пептид из 10 аминокислот, так называемый ангиотензин I. Под действием превращающего фермента в легких неактивный ангиотензин I переходит в активную форму – ангиотензин II. Этот низкомолекулярный (8 аминокислот) пептид представляет собой физиологически высокоактивное вещество, обладающее множественными эффектами, среди которых наиболее значимыми являются стимуляция синтеза и секреции из клубочковой зоны коры надпочечников гормона альдостерона и мощное сосудосуживающее действие. Инактивация ангиотензина II с превращением его в ангиотензин III осуществляется системой ангиотензиназ плазмы крови. Выделяющийся из надпочечников альдостерон стимулирует в почечных канальцах реабсорбцию натрия и приводит к задержке этого иона в организме. Ключевым звеном цепи
8-09-2015, 20:07