Радіонуклідні дослідження

Реферат

Тема:Радіонуклідні дослідження


План

Радіонуклідний метод діагностики

Емісійна комп’ютерна томографія

Однофотона емісійна КТ

Позитронна емісійна томографія (ПЕТ)

Радіоімунні (invitro) методи діагностики.

Метод магнітно-резонасной томографії

Протипоказання і потенційні небезпеки МРТ

Загальні вимоги та рекомендації при виборі методу візуалізації

Небезпека візуалізації

Обов’язки лікаря, що проводить лікування, при направленні хворих на КТ та МРТ

Література


Радіонуклідний метод діагностики

Спільним між рентгенологічним і радіонуклідним дослідженнями є використання іонізуючого випромінювання. Всі рентгенологічні дослідження, включаючи КТ, базуються на фіксації випромінювання, що пройшло через тіло пацієнта. В той же час радіонуклідна візуалізація заснована на реєстрації випромінювання, що випускається радіоактивними речовинами, які знаходяться в організмі пацієнта.

Радіонуклідна діагностика –група методів, що основані на візуалізації органів та тканин путем внешньої детекції (регістрації) іонізуючого випромінювання від введенного в организм радіоактивного індикатора- радіофармацевтичного препарату (РФП). РФП – хімічна сполука, що містіть в своїй молекулі радіоактивний нуклід та призначена для введення людині з діагностичною метою. РФП можуть використовуватися як для діагностичних, так і для терапевтичних цілей. Всі вони мають в своєму складі радіонукліди – нестабільні атоми, що спонтанно розпадаються з виділенням енергії. При синтезі РФП радіонуклід з’єднується з молекулою-носієм, яка визначає його розподіл в організмі. Ідеальний РФП розповсюджується в організмі тільки в межах, призначених для візуалізації певних органів і структур. Запис характеристик радіоактивності може в подальшому надати важливу функціональну інформацію.

Критерії вибіру РФП:

- органотропність;

- низька радіотоксичність при відносно високих допустимих дозах;

- короткий період напіврозпаду метки;

- оптимальна для візуалвзації енергія випромінюваня;

Слід пам’ятати, що наявність в молекулі РФП радіоактивого атому лише забезпечує можливість внешньої регістрації виромінювання, а тропність до того чи іншоо органу чи тканини обумовлена хімічною структрою молекули-носія.

Спроможність вивчення фізіологічних функцій - головна перевага радіонуклидної діагностики у порівнянні з альтернативними радіологічними методиками. З метою візуалізації органів та тканин потрібно віддавати перевагу радіонуклідам, які випускають гама-кванти (високоенергетичне електромагнітне випромінювання). Альфа-частки (ядра гелію) і бета-частинки (електрони) не використовуються для візуалізації через погане проходження їх через тканини. Подібно рентгенівським променям, проникаюча спроможність гама-випромінювання зростає зі збільшенням енергії фотонів. З іншого боку, енергія гама-квантів не повинна бути надмірно великою, щоб фотони не проходили через детектор без поглинання. Для радіонуклідної візуалізації більш сприятлива енергія - в діапазоні 50-З00 КеВ, ідеальна енергія -150 КеВ. В таблиці 1 наведені радіонукліди, найбільш часто застосовані в ядерній медицині.

Таблиця 1. Радіонукліди, найбільш часто застосовані в ядерній медицині.

Радіонуклід Період напіврозпаду
99mTc 6 год.
113In 99 хв.
123I 13 год.
131I 8 діб
201Tl 3 доби
67Ga 2,5 діб
133Xe 5 діб

Отримання зображень в радіонуклідній діагностиці основано на внешній регістрації радіоактивного випромінювання (гама-випромінювання), що іспускається радіоактивною речовиною, введенною в організм пацієнта та розподіленим в органах та тканинах в залежності від хімічної структури меченої сполуки та інтенсивності соответствуючих фізіологічних процесів. Основний тип приборів, що застосовуються в радіонуклідній діагностиці – гама-камери (одно-, двох- та трьохдетекторні). Статична сцинтиграфія –зображення в виді проєкції розподілення РФП в организмі на плоскість. Динамічна сцинтиграфія – отримання серії плоскосних зображень протягом определенного часу. Динамічна сцинтиграфія застосовується коли необхідно оцінити динамику (накописення та виведення) індикатора в (органі) тканині.

Емісійна комп’ютерна томографія

Подібно рентгенівській комп’ютерній томографії, у радіонуклідній візуалізації є своя томографічна технологія. На сьогодні застосовуються дві основні томографічні методики:

1) однофотонна емісійна КТ (ОФЕКТ, SPECT),

2) позитронна емісійна томографія (ПЕТ, РЕТ).

Теоретичні основи реконструкції тривимірних зображень за сукупністю двовимірнихпроекцій розробив ще в 1917р. австрийський математик J.Radon. Але він запропонував неефективний алгоритм реконструкції зображень, що визначає зображення за його лінійними інтегралами. Важливим стимулом для розвитку ПЕТ стало успішне впровадження в медичну практику в 1972р. рентгенівської комп’ютерної томографії. Ідея створення емісійних томографів виникла майже водночас із ідеєю створення рентгенівських комп’ютерних томографів, однак темпи реалізації останньої виявились повільнішими. Справа в тому, що при проведенні позитронної емісійної томографії використовують короткоживучі та ультракороткоживучі радіонукліди, які неможливо транспортувати на великі відстані. Безпосередньо в медичному закладі необхідно встановлювати міні-циклотрон та обладнувати радіохемічну лінію для отримання й виділення необхідних для досліджень позитроновипромінюючих радіонуклідів та синтезу на їх основі необхідних для дослідження РФП. Лише після того, як було організовано виробництво циклотронів і генераторів для одержання коротко- та ультракороткоживучих позитроновипромінюючих радіонуклідів,було створено базу для широкого клінічного застосування позитроних емісійних томографів.

Однофотона емісійна КТ

ОФЕКТ базується на обертанні навколо тіла пацієнта детектора гама-камери, який фіксує радіоактивність при різних кутах сканування і за допомогою комп’ютера реконструюється секційне зображення.

ОФЕКТ використовується з тою ж метою, що і статична сцинтиграфія, тобто для отримання анатомо-функціонального зображення органу, але відрізняєтья від останньої тим, що виявляє навіть незначні зміни і відповідно дозволяє діагностувати патологічні зміни на ранніх стадіях захворювання і з більшою вірогідностю. Методика широко використовується для обстеження кардіологічних, неврологічних і онкологічних пацієнтів.

Позитронна емісійна томографія (ПЕТ)

Позитронна емісійна комп’ютерна томографія за клініко-діагностичнии завданнями принципово відрізняється від рентгенівської комп’ютерної томографії. При рентгенівської КТ за допомогою зовнішнього опромінювання досліджують структурно-морфологічні, анатомічні зміни органа; при ПЕТ за допомогою введених в організм РФП визначають не тільки структурно-морфологічні зміни, а насамперед функціональний стан органів та систем, виявляють фізіологічні порушення та ранні патологічні зміни в організмі. Позитронна емісійна томографія виявляє функціональні порушення, що,як правило, попередують морфологічним змінам. Завдяки цьому поліпшується рання діагностика захворювань, а відтак і результати лікування.

ПЕТ є методом пошарового радіонуклідного дослідження. В якості РФП використовують радіонукліди, що випромінюють ультракороткі позитрони, період піврозпаду складає декілька хвилин, наприклад, 11С-(20,4хв.), 15О-(2,03хв.), 13Н- (10хв.), 18F-(110хв.). Ці елементи беруть участь у біохімічних процесах, що дає можливість вивчати метаболічні процеси та здійснювати кількісну оцінку концентрації радіонуклідів на різних стадіях захворювання. Методика має колосальні потенційні можливості для діагностики різноманітних захворювань.

Суть позитронної емісійної томографії полягає в високоефективному способі спостереження за надзвичайно малими концентраціями ультракороткоживучих радіонуклідів, якими помічені ті фізіологічно значущі сполуки, метаболізм яких досліджується.

Метод ПЕТ базується на використанні властивості нестійкості ядер ультракороткоживучих радіонуклідів, в яких кількість протонів перевищує кількість нейтронів. При переході ядра в стійкий стан воно випромінює позитрон, вільний пробіг якого закінчується зіткненням з електроном та анігіляцією. Ця томографічна технологія базується на використанні позитронів, що випускаються радіонуклідами. Позитронии та електрони мають однакову масу, але протилежні заряди. Випущений позитрон відразу ж реагує з найближчим електроном; ця реакція називається анігіляцією та призводить до виникнення двох гама-квантів по 511кеВ, що поширюються в діаметрально протилежних напрямках. Для виявлення анігіляційних квантів використовують спеціальні детектори: енергія фотона (511кеВ) дуже велика, щоб використовувати звичайну гамма-камеру. Гамма-кванти можна зареєструвати за допомогою системи детекторвв.Якщо два діаметрально протилежні детектори одночасно зареєструють сигнал, то можна стверджувати, що точка анігіляції знаходиться на лінії, яка з’єднує детектори.Підключивши детектори до електронної схеми збігів, яка спрацьовує тільки при появі сигналів від обох детекторів, можна зафіксувати положення цієї лінії. Для визначення координат позитроновипромінюючого джерела коліматори не потрібні. Ця властивість ПЕТ одержала назву «електронної колімації». Завдякі їй чутливість ПЕТ на 1-2 порядки вища, ніж ОФЕКТ. Такий виграш у чутливості дозволяє домогтися більшої статистичної вірогідності при реконструкції зображень.

Головним доводом на користь використання ультракороткоживучих радіонуклідів, а відповідно і ПЕТ, стала та обставина, що багато хімічних елементів, які мають ультракороткоживучі радіонукліди, що випромінюють позитронии, такі як 11С, 13N, 15O и 18F, приймають активну участь в більшості біологічних процесів людського організму. Радіофармпрепарат, помічений радіонуклідом, що випромінює позитрони, який вибранний із ряду «фізіологічних» ультракороткоживучих радіонуклідів, може бути метаболічним субстратом чи однією із життєво важливих у біологічному відношенні молекул. Крім цього, їх використання дозволяє мінімізувати час дослідження та радіаційне навантаження на хворого, оскільки, хоч активність радіонуклидів відносно велика, вони практично повністю розпадаються вже за час дослідження. Таким чином, ККД введенної активності максимальний, а сумарна доза мінімізована.

Чутливість ПЕТ фантастична. Наприклад, можливо констатувати змінення кількості глюкози, поміченої 11С, в очному центрі головного мозку при відкриванні очей. Тому ПЕТ використовують при дослідженні найтонших метаболічних процесів у мозку, включаючи розумові. За допомогою ПЕТ вивчають метаболізм глюкози, жирів, білків, кінетику переносу речовин крізь клітинні мембрани, динаміку концентрації водородних іонів в клітинах, фармакокінетику та фармакодинаміку лікарських препаратів. ПЕТ дозволяє здійснювати кількісну оцінку концентрації радіонуклідів та містить у собі колосальні потенційні можливості по вивченню метаболічних процесів на різних стадіях захворювання, в тому числі психічних.

Позитронно-емісійна томографія розширила наше розуміння біохімічних основ нормальної та патологічної роботи систем всередині організму та дозволила проводити біохімічні дослідження пацієнтам одночасно з їх лікуванням. Можливості позитронної емісійної томографії великі, і основні недоліки радіонуклідів для ПЕТ - це необхідність використання для їхнього виробництва дорогих циклотронів і короткі періоди піврозпаду радіонуклідів (періоди напіврозпаду 15О та 18F складають 2 хв. і 110 хв. відповідно), що вимагає певних умов (дуже близького розташування циклотрону до клінічних відділень), що в свою чергу є причиною повільного впровадження ПЕТ в практичну медицину. Найчастіше використовують радіофармпрепарат 18F-фтордеоксиглюкозу (18F-ФДГ),зручний як з точки зору задач, що розв’язуються ПЕТ з використанням цього препарату, так і з точки зору зручного періоду піврозпаду (110 хвилин). Цей РФП можна синтезувати в центрі з медичним циклотроном, а потім транспортувати до близько розташованих клінік, де циклотрон відсутній, але є позитронні емісійні томографии. Це так звана «сателітна схема» роботи ПЕТ-центрів. Завдяки їй позитронна емісійна томографія стає доступнішою та економічнішою.

Найбільше значення ПЕТ має в онкології (75% всіх досліджень), кардіології, неврології та нейрохірургії. Згідно з міжнародними стандартами , потреба в позитронних емісійних томографах -0,2-0,4 на 1 млн населення.

Радіоімунні (in vitro) методи діагностики

З 1982 р. в клініках почали використовувати методики in vitro діагностики, що стало революційним стрибком в променевій діагностиці. Принцип радіоімунного методу базується на конкуренції речовин за поєднання зі специфічною сприймаючою системою. В конкуренції приймають участь речовина, яку бажають виявити, і аналогічна її речовина, але мічена радіонуклідом.

Для виконання in vitro досліджень випускають стандартні набори реагентів, кожний з яких призначений для виявлення концентрації певної речовини. В якості мітки частіше використовують g- випромінювач 125I, або b-випромінювач 3Н.

При виконанні in vitro методики потрібно використовувати розчин, в яких міченого антигену завжди більше, ніж антитіл. В такому випадку відбувається боротьба міченого і не міченого антигенів за володіння зв’язком з антитілом. Антитіла повинні бути максимально специфічними, тобто реагувати тільки з досліджуваним антигеном. Одночасно з визначенням концентрації речовини, що визначаються, у пацієнта, виконують в тих самих умовах і з тими ж самими наборами дослідження стандартної сироватки з завідомо встановленою концентрацією антигену, що визначається. Співставленням радіоактивності проби від пацієнта з калібровочною кривою дозволяє визначити концентрацію речовини, що визначається, у пробі.

Радіонуклідний аналіз in vitro називають радіоімунним тому, що він базується на використанні імунних реакцій антиген-антитіло. Якщо в якості міченої субстанції використовують антитіло, аналіз називають імунорадіометричним, якщо в якості зв’язуючої системи беруть тканьові рецептори, то говорять про радіорецепторний аналіз.

Метод магнітно-резонасной томографії

Магнітно–резонансна томографія (МРТ) - наймолодша із радіологічних методик і в порівнянні з рентгенівським і радіонуклідним методами, МРТ використовує енергію з протилежного краю електромагнітного спектру. Енергія МРТ на дев’ять порядків нижче, ніж енергія рентгенівського і радіонуклідного методів. МРТ стала впроваджуватися в клініку приблизно на десятиліття пізніше, ніж КТ ( 80-ті роки). Значення появи МРТ порівнюють з відкриттям рентгенівського випромінювання.

МР-томографи можуть створювати зображення розтину будь-якої частини тіла. При цьому іонізуюче випромінювання не використовується. У порівнянні з ультрасонографією та рентгенівською КТ методика магнітно – резонансної томографії дорожча, технічно складніша і теоретично важча для розуміння. Незважаючи на це, МРТ зробила революцію в діагностичній радіології.

Після включення ЯМР до числа методів діагностичної радіології, прикметник ядерний було вилучено через пропозицію маркетологів та у зв’язку із наполяганням фахівців-радіологів через те, що він в масовій свідомості асоціювався з ядерною зброєю або ядерними електростанціями, з якими ЯМР взагалі нічого спільного не має. Радіологів хвилювало те, що пацієнти не зможуть відрізнити один від одного різні значення прикметника ядерний. Тому, у теперішній час, говорячи про медичні застосування ми вживаємо термін МРТ і МР-спектроскопія.

Методика МРТ базується на явищі ядерно-магнітного резонансу. Якщо тіло, що знаходиться у постійному магнітному полі, опромінити зовнішнім змінним магнітним полем, частота якого дорівнює частоті переходу між енергетичними рівнями ядер атомів, то ядра розпочнуть переходити у вищерозташовані по енергії квантові стани. Інакше кажучи, спостерігається виборче (резонансне) поглинання енергії електромагнітного поля. При припиненні впливу змінного магнітного поля виникає резонансне виділення енергії у вигляді радіосигналу.

Магнітне поле магніту позначається як Во та відображається вектором, тобто стрілкою, орієнтація якої показує напрямок магнітного поля з півночі на південь, а довжини – силу магнітного поля. Для однозначного визначення позиції всередині магніту та ії співставлення з зображенням, використовується трьохкоординантна система з осями x, y та z (рис.1). Напрямок z - це завжди направлення магнітного поля Во та, коли це поле параллельно продольной осі пацієнта, перпендикулярна до z горизонтальна вісь позначається як x, а вертикальна – y. Плоскість, що проходить крізь осі x та y (плоскість x – y) зорієнтована перпендикулярно магнітному полю Во. Сила магнітного поля вимірюється в теслах (Тл), що замінили декілька років назад колишню одиницю Гаус (1Тл =10000 Гс). Для клінічної МРТ використовуються поля силою від 0.1 до 2 Тл (в експерименті допускається використання 4Тл). У клінічній практиці служба радіологічної безпеки забороняє застосування МР-томографів з полем більш 2.5 Тл. Понад цієї межі поля вважаються потенційно небезпечними і можуть допускатися тільки для наукових лабораторій. Для порівняння, сила магнітного поля Землі коливається від 0.7 Гауса на полюсі до 0.3 Гауса на екваторі.

МРТ дослідження спирається на спроможності ядер деяких атомів поводити себе як магнітні диполі. Цією властивістю володіють ядра, що містять непарне число нуклонів що відрізняються ненулевим спином і відповідним йому магнітним моментом. Найбільш цікавими для магнітно-резонансної томографії являються ядра 1H, 13C, 19F, 23Na та 31P. Усі вони присутні у тілі людини. Але протони (1H) найбільш поширені, тому що основними компонентами тканин живих істот є вода, жир, вуглеводи та інші біохімічні сполуки, які містять водень. Усі вони володіють магнітними властивостями, що відрізняє їх від немагнітних ізотопів.

Сучасні МРТ настроєні на ядра водню. Ядра водню, часто у даному контексті пойменовані протонами, є дуже маленькими магнітними диполями з північним і південним полюсами. Коли пацієнт знаходиться всередині сильного магнітного поля МР-томографа, усі маленькі протонні магніти тіла розвертаються у напрямі зовнішнього поля (подібно магнітній стрілці, що орієнтується на магнітне поле Землі). Окрім цього, магнітні осі кожного протона починають обертатися навколо напрямку зовнішнього магнітного поля. Цей специфічний обертальний рух називають прецесією. а його частоту – частотою Лармора (за прізвищем французького фізика Лармора). Частота Лармора (що) пропорціональна силі зовнішнього магнітного поля (Во):

що=г Во

Це рівняння називають рівнянням Лармора, де г – константа, яка називається гідромагнетичним коефіцієнтом. Дане відношення що/Во індивідуальне для кожного типу магнітних атомних ядер, так, для ядер водню воно дорівнює 42,58 МГц при 1,0Тл.

Будь-яке магнітне поле може индуцирувати у катушці електричний струм, але передумовою цього є зміна сили поля. Для індуцирування полем (М) тока у катушці необхідні радіохвилі. Радіохвилі - це електомагнітні хвилі, які містять електричне та магнітне поля. При пропусканні крізь тіло пацієнта впродовж осі коротких електромагнітних радіочастотних імпульсів магнітне поле радіохвиль змушує магнітні моменти усіх протонів обертатись по часовій стрелці навколо цієї осі. Для того, щоб це сталося, необхідно, щоб частота радіохвиль дорівнювала ларморовській частоті протонів. Це явище називають магнітним резонансом. Під резонансом розуміють сінхронні коливання, і в даному контексті це означає, що для зміни орієнтації магнитних моментів протонів магнітні поля протонів та радіохвиль повинні резонувати, тобто мати однакову частоту.

Контраст на МР-зображеннях обумовлен відмінностями в магнітних властивостях тканин чи, точніше, відмінностями в магнітних векторах, що індуцирують токи в прийомній катушці. Величина магнітного вектора тканини насамперед обумовлюється щільністью протонів. Анатомічні ділянки з малою кількістью протонів, наприклад, повітря, завжди індуцирують дуже слабий МР-сигнал, та, таким чином, завжди представляються на зображенні темними. Вода та інші рідини, з іншого боку, повинні бути яркими на МР-зображеннях, тому що вони мають дуже високу щільність протонів. Однак, це не так. У залежності від методу, що використовується для отримання МР-зображення, рідини (наприклад, спинномозгова) могуть давати як яркі, так і темні зображення. Причина цього явища полягає у тому, що контрастність зображення обумовлюється не тільки щільністью протонів. Певну роль відіграють ще кілька інших параметрів, де найбільш важливі з них –Т1 та Т2.

Для реконструкції зображення необхідно кілька МР-сигналів. Таким чином, повинно бути передано кілька радіочастотних імпульсів. У проміжку між передачею імпульсів протони подвергаються двом процессам релаксації – Т1 та Т2. Релаксація – це наслідок поступового зникнення намагніченості у плоскості x-y (Mxy). Втрата магнетизму у плоскості x-y називається Т2-релаксацієй. Т2 визначається як час, протягом якого Mxy втрачає 63% від свого первісного максимального значення. Звичайне Т2 для паренхіматозих


8-09-2015, 20:09


Страницы: 1 2 3
Разделы сайта