Реферат
на тему:
ИЗМЕРЕНИЕ КРОВЯНОГО ДАВЛЕНИЯ.
ИЗМЕРЕНИЕ КРОВЯНОГО ДАВЛЕНИЯ
Как один из физиологических показателей, который можно достаточно просто измерить, давление крови считается хорошим индикатором состояния сердечно-сосудистой системы. За всю историю применения измерение давления крови спасло много людей от преждевременной смерти, так как вовремя было получено предупреждение об опасно высоком давлении (гипертония) и начато лечение. В 1728 г. Хейлз ввел стеклянную трубку в артерию лошади и таким грубым способом осуществил первое прямое измерение давления. Пуазейль приставил ртутный манометр к длинной стеклянной трубке Хейлза; позднее Людвиг, добавив поплавок, изобрел кимограф, который позволил производить непрерывную запись давления крови. И лишь совсем недавно преобразователи с датчиками механического напряжения и сложные электронные системы заменили манометр и кимограф. Сложные и достаточно безопасные методы катетеризации сосудов получили широкое распространение и в диагностических и в лечебных отделениях.
Формирование кровяного давления
Чтобы в общих чертах понять, что происходит в системе кровообращения и как возникают колебания кровяного давления, рассмотрим некоторые базовые сведения об этой системе. Цикл работы сердца можно условно разделить на две основные части: систолу и диастолу. Систола – период сокращения сердечных мышц, во время которого кровь выталкивается в легочную артерию и аорту. Диастола – это период расширения полостей сердца, во время которых они наполняются кровью. Как только кровь будет вытолкнута в артериальную систему, сердце расслабляется, давление в камерах уменьшается, выходные клапаны закрываются. Через короткое время снова открываются входные клапаны, вновь начинается диастола и начинается новый цикл работы сердца.
Пройдя через многочисленные ветвления артерий, кровь достигает жизненно важных органов, мозга и конечностей. Последней ступенью артериальной системы являются постепенно уменьшающиеся в поперечном сечении артерии, число которых увеличивается; в конце концов, кровь достигает самых маленьких артерий - артериол (диаметр 15-70 мкм), которые переходят в капилляры (диаметр 5-7 мкм), поставляющие клеткам кислород и удаляющие из них двуокись углерода. Капилляры объединяются в венулы, венулы — в малые вены, затем в более крупные вены и, наконец, последние образуют верхнюю и нижнюю полые вены
При сокращении сердечной мышцы давление крови в левом желудочке доходит до 140 – 150 мм. рт . ст. Под таким давлением кровь поступает в аорту, давление её уже несколько ниже – 130-140 мм. рт. ст. И чем дальше движется кровь тем ниже и ниже становится давление . В артериях оно составляет 120- 130 мм. рт. ст. особенно резко оно падает в мелких артериях и артериолах – до 60- 70 мм. рт ст., а в капиллярах – до 30- 40 мм. В мелких венах давление крови 10-20 мм рт ст, а в крупных венах оно становится даже отрицательным, то есть ниже атмосферного давления почти на 5 мм. рт. .
Рис 1 В разных отделах кровеносной системы давление крови различно.
В связи с тем, что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях носит пульсирующий характер. Линейная скорость кровотока в аорте максимальна в момент сердечного сокращения и уменьшается во время диастолы. В капиллярах и венах пульсации затухают, в них скорость кровотока почти постоянна и минимальна рис.134 с.269. Это объясняется тем, что малый диаметр просвета капилляра компенсируется их огромным количеством. Суммарная длина капилляров человеческого тела составляет около 100000 км., то есть нить, которой можно 3 раза опоясать землю по экватору. Общая их поверхность составляет около 1500 га.
Непрерывный ток крови в сосудистой системе обусловлен упругими свойствами. Во время систолы часть кинетической энергии сердечного сокращения тратится на растяжение аорты и крупных артерий. Последние образуют эластическую компрессионную камеру, в который поступает значительный объем крови, растягивая ее; при этом кинетическая энергия, развитая сердцем, переходит в потенциальную энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий сокращаются и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.
В момент изливания крови из сердца возникает пульсовая волна. Волна повышенного давления и вызванные этим растяжением колебания сосудистой стенки распространяются с высокой скоростью от аорты до артериол и капилляров, где пульсовая волна гаснет. Скорость распространения пульсовой волны (СРПВ) не зависит от скорости движения крови, а определяется преимущественно величиной кровяного давления и эластичностью стенок сосудов. Это свойство СРПВ лежит в основе одного из известных методов измерения артериального давления (АД). Так у людей молодого возраста при нормальной величине АД линейная скорость течения крови по артериям не превышает 0,3-0,5 м/c, тогда как СРПВ достигает 9 м/c.
Величина кровяного давления у человека с возрастом меняется. От 16 до 50 лет давление крови равно 110-125 мм. рт. ст. К 60 годам оно повышается до 135-140 мм. рт. Ст
Вариабельность артериального давления
Артериальное давление - один из более чем 300 физиологических параметров в организме, подчиненных суточным ритмам. Его уровень в течение суток может изменяться под действием различных факторов более чем на 50 мм рт. ст. Наиболее часто вариабельность артериального давления рассчитывается как стандартное отклонение средней величины (s) за сутки, день и ночь. Стандартное отклонение выражается в миллиметрах ртутного столба. Коэффициент вариации (КВ) является расчетным показателем и определяется по формуле: КВ=(s / среднее АД)•100%. В норме у взрослых стандартное отклонение систолического артериального давления за сутки <15,2 мм рт. ст., за дневной период <15,5 мм рт. ст., за ночной период < 14,8 мм рт. ст. Для диастолического артериального давления нормальные значения s за сутки, день и ночь составляют соответственно <12,3, <13,3 и <11,3 мм рт. ст. Вариабельность артериального давления считается повышенной, если она превышает норму хотя бы за один период времени. Для большинства больных артериальной гипертензией характерна высокая вариабельность артериального давления
В клинической практике обычно анализируется поведение артериального давления, так как этот сигнал, несет больше информации о состоянии сердечно-сосудистой системы (ССС) рис. -1. Вены несут важную функцию в ССС, они, фактически, являются резервуаром, хранящим в себе свыше 70 % крови в организме. Вместе с тем, сигналы венного давления и венного пульса менее информативны, чем АД, т.к. колебания давления и пульсовая волна затухают, не доходя до вен.
Циркадные колебания артериального давления
В физиологических условиях у большинства здоровых людей в ночное время происходит снижение артериального давления на 10-20% по сравнению с дневными показателями. Выраженность двухфазного ритма артериального давления день-ночь оценивается по суточному индексу (СИ), который рассчитывается по формуле: СИ=[(среднее АД дн.-среднее АД ночн.)/ среднее АД дн.]ћ100% соответственно для систолического и диастолического давления [6].
Пациентов с суточным индексом 10-22% называют дипперами (dippers). У них регистрируется профиль артериального давления с углублением в ночные часы, имеющий вид ковша (в английской транскрипции dipp). Реже встречаются больные, у которых артериальное давление ночью снижается меньше или не снижается совсем. Они относятся к категории "нон-дипперов" (non-dippers). Суточный индекс при этом менее 10% и внешняя форма профиля без ночного углубления. Доля "нон-дипперов" в популяции больных артериальной гипертензией не установлена. Показано, что "монотонный" суточный профиль встречается у больных с некоторыми видами симптоматической гипертензии: в первую очередь при реноваскулярной ее форме [8]. Подобный суточный ритм артериального давления наблюдается при синдромах Конна, Кушинга, феохромацитоме. Выделяют также группу пациентов с чрезмерным падением артериального давления в ночное время, или "extreme-dippers". Суточный индекс у них выше 22%. При этом происходит гипоперфузия головного мозга, миокарда, особенно у больных со сниженным коронарным запасом при сердечной гипертрофии. Существуют и "night-peakers", у которых регистрируется ночной подъем артериального давления и суточный индекс имеет отрицательное значение.
Методы измерения кровяного давления
Прямые (инвазивные) методы измерения давления крови
“Прямые методы измерения позволяют с высокой точностью регистрировать временной ряд кровяного давления в непрерывном режиме и осуществлять длительный мониторинг. Применение современной компьютерной техники позволило автоматизировать процесс контроля этого сигнала.
Прямые методы измерения давления крови подразумевают введение в сердечно-сосудистую систему преобразователя или катетера, присоединенного к преобразователю. Катетер представляет собой тонкую гибкую трубку, предназначенную для введения в поток крови.
Чтобы достичь точки, где необходимо произвести исследование, можно:
1. ввести катетер через сосуд к точке измерения, которая может располагаться вблизи от точки введения, в одном из главных сосудов, или даже в самом сердце,
2. преобразователь давления в электрический сигнал может быть укреплен непосредственно на кончике катетера.
В первом случае, для передачи давления от точки измерения до преобразователя служит столб жидкости (стерильный раствор, препятствующий сворачиванию крови). Важно следить за тем, чтобы точка измерения давления и преобразователь находились на одном уровне с сердцем. В этом случае, согласно закону Паскаля, избыточное давление столба жидкости вносит минимальные искажения в результаты измерения АД (рис. 1).
Рис. –2 участок временной реализации АД.
Преимуществом этого метода является то, что давление измеряется постоянно, отображаясь в виде кривой давление/время. Однако пациенты с инвазивным мониторингом АД требуют постоянного наблюдения из–за опасности развития тяжелого кровотечения в случае отсоединения зонда, образования гематомы или тромбоза в месте пункции, присоединения инфекционных осложнений.
Используют несколько типов датчиков-преобразователей. В резистивном преобразователе изгибающаяся под действием силы давления диафрагма изменяет натяжение тонких проволочек, меняя их сопротивление (рис. 2a). Эти проволочки включены в одно из плеч мостовой схемы аналогичной рассмотренной в РЕОГРАФ. Преобразователь подключается к усилителю и на мост подается напряжение (постоянное или переменное). Если мост сбалансирован и откалиброван, то с выхода усилителя снимается сигнал пропорциональный величине давления [1, стр. 145].
В типичном емкостном преобразователе диафрагма, перемещаемая под действием давления, соединена с подвижной обкладкой переменного конденсатора (рис. 2b). При перемещении этой обкладки относительно неподвижной возникающие изменения емкости отражают изменения измеряемого давления крови. Эти колебания емкости далее преобразуются в колебания электрического напряжения, усиливаются и анализируются [1, стр. 146].
Кроме того, при измерении давления прямым методом на время исследования существенно ограничивается мобильность пациента. Преимуществом этого метода является то, что давление измеряется постоянно, отображаясь в виде кривой давление/время. Хотя катетеризация обычно требуют минимального хирургического вмешательства, но, тем не менее, может быть осуществлена только специально подготовленным медицинским персоналом в условиях клиники. Кроме того, при измерении давления прямым методом на время исследования существенно ограничивается мобильность пациента, причём пациенты с инвазивным мониторингом АД требуют постоянного наблюдения из–за опасности развития тяжелого кровотечения в случае отсоединения зонда, образования гематомы или тромбоза в месте пункции, присоединения инфекционных осложнений.”[ http://www.sgu.ru/faculties/fnbmt/departments/kmbmi/chair.htm]
Эти особенности обусловили развитие косвенных (бескровных) методов измерения давления.
Косвенные (неинвазивные) методы измерения кровяного давления
В настоящее время известно несколько групп методов косвенной регистрации кровяного давления.
В зависимости от принципа, положенного в основу их работы, различают пальпаторный, аускультативный и осциллометрический методы. Пальпаторный метод предполагает постепенную компрессию или декомпрессию конечности в области артерии и пальпацию ее дистальнее места окклюзии. Один из первых аппаратов, предложенный в 1876 г. S. Basch, позволял определять систолическое АД. В 1896 г. S. Riva–Rocci предложил использовать охватывающую компрессионную манжету и вертикальный ртутный манометр для пальпаторного метода. Однако узкая манжета (шириной всего 4–5 см) приводила к завышению полученных значений АД до 30 мм рт.ст. Через 5 лет F. Recklinghausen увеличил ширину манжеты до 12 см и в таком виде этот метод существует до настоящего времени. Давление в манжете поднимается до полного прекращения пульса, а затем постепенно снижается. Систолическое АД определяется при давлении в манжете, при котором появляется пульс, а диастолическое – по моментам, когда наполнение пульса заметно снижается либо возникает кажущееся ускорение пульса (pulsus celer).
Аускультативный метод измерения АД был предложен в 1905 г. Н.С. Коротковым. Типичный прибор для определения давления по методу Короткова (сфигмоманометр или тонометр состоит из манжеты, которая накачивается воздухом, и ртутного манометра или анероида для измерения давления в манжете. Манжета состоит из резиновой камеры и неэластичной матерчатой оболочки, которую можно обернуть вокруг предплечья и закрепить. Манжету обычно накачивают вручную резиновой грушей, воздух из нее можно медленно выпустить через специальный клапан.
Принцип работы сфигмоманометра состоит в том, что если манжету обернуть вокруг предплечья и накачать, то артериальная кровь может протекать через участок, зажатый ею, только тогда, когда АД превышает давление в манжете. Кроме того, если манжету накачать до давления, при котором артерия пережимается только частично, то поток становится турбулентным в те моменты времени, когда кровь прорывается через узкое отверстие в артерии во время каждого сердечного сокращения. Возникающие при этом звуки, называемые тонами Короткова, можно услышать с помощью стетоскопа, располагаемого под артерией ниже повязки (рис. 3).
Чтобы измерить давление с помощью сфигмоманометра и стетоскопа, давящую манжету на предплечье сначала накачивают до давления, заведомо превосходящего систолическое (“верхнее”). При этом звуки в стетоскопе не прослушиваются, так как артерия полностью пережата манжетой. Затем давление в манжете понижают, и как только давление в манжете станет меньше систолического, небольшие порции крови станут прорываться через артерию под манжетой и через стетоскоп начнут прослушиваться тоны Короткова. Давление в манжете, которое показывает манометр в тот момент, когда будет услышан первый тон Короткова, регистрируется как систолическое.
По мере того как давление в манжете продолжает падать, тоны Короткова продолжают прослушиваться до тех пор, пока давление в манжете будет недостаточно для пережатия сосуда на всех участках сердечного цикла. Поток крови становится ламинарным, тоны Короткова исчезают, и в этот момент манометр показывает значение диастолического давления.
В таком виде данный метод активно применяется и поныне. Каждому хотя бы раз измеряли АД с помощью сфигмоманометра во время медицинских осмотров.
Аускультативная методика в настоящее время признана ВОЗ, как референтный метод неинвазивного определения АД, несмотря на несколько заниженные значения для САД и завышенные – для ДАД по сравнению с цифрами, получаемыми при инвазивном измерении. Важными преимуществами метода является более высокая устойчивость к нарушениям ритма сердца и движениям руки во время измерения. Однако у метода есть и ряд существенных недостатков, связанных с высокой чувствительностью к шумам в помещении, помехам, возникающим при трении манжеты об одежду, а также необходимости точного расположения микрофона над артерией. Точность регистрации АД существенно снижается при низкой интенсивности тонов, наличии «аускультативного провала» или «бесконечного тона». Сложности возникают при обучении больного выслушиванию тонов, снижении слуха у пациентов. Погрешность измерения АД этим методом складывается из погрешности самого метода, манометра и точности определения момента считывания показателей, составляя 7–14 мм рт.ст. Две главные причины делают манжетные приборы непригодными для мониторного контроля АД. Во-первых, для оперативного контроля необходимо достаточно часто определять уровень АД и, следовательно, часто накачивать окклюзионную манжету, что становится постоянно действующим беспокоящим фактором, особенно во время сна, превращающимся в источник эмоционального стресса, а это недопустимо для тяжелого больного палаты интенсивной терапии. Во-вторых, в условиях произвольных движений больного манжетные измерители практически неработоспособны. Это связано с тем, что от пациента, находящегося в тяжелом состоянии, в принципе нельзя требовать какой-либо предварительной установки на процедуру измерения, например чтобы он в это время не двигался или принял специальное положение в кровати. Больше того, тяжелый или спящий больной скорее всего в момент измерения станет беспокоиться, создавая интенсивный сигнал помехи, если измерение связано с таким беспокоящим воздействием, каким является раздувание окклюзионной манжеты. В подобной ситуации даже привлечение компьютера не даст желаемого эффекта, так как компьютер, распознав помеху, выдаст запрос на повторение процедуры измерения, т. е. на повторное накачивание манжеты, и этот процесс многократного повторения измерений не только увеличит и без того сильное стрессорное воздействие, но и может вызвать ишемию окклюзируемого органа. Сказанное делает понятным, почему даже сравнительно хорошие манжетные измерители АД все-таки не нашли применения в палате интенсивной терапии и в случае острой необходимости врачи прибегают к прямому методу. Поэтому альтернатива использовать в палате интенсивной терапии манжетные или безманжетные методы для мониторинга АД должна быть решена в пользу последних, даже если они будут уступать манжетным по точности или другим эксплуатационным характеристикам, не связанным с надежностью, оперативностью и удобством контроля АД.
Размеры манжеты (наиболее важны такие ее показатели, как ширина и длина внутренней эластичной камеры) должны соответствовать периметру (охвату) плеча – длина не менее 80%, а ширина около 40% охвата плеча. Камера стандартной средней плечевой манжеты для взрослого человека имеет размеры примерно 13 . 24 см и приемлема только для охватов от 22 до 33 см. У большой части взрослого населения охваты значительно превышают 32 см и применение стандартных манжет приводит к существенному завышению значений А Измерение АД при нарушениях ритма сердца представляет более серьезную проблему. Необходимо пальпировать лучевую артерию для оценки неравномерности сокращений сердца в ходе измерения. При редкой экстрасистолии желательно повторить измерение и ориентироваться на значения АД, полученные при регулярном ритме. При частой экстрасистолии и мерцательной аритмии необходимо ориентироваться на средние значения АД по результатам 4–6 последовательных измерений.
АД нужно определять в положении сидя, лежа
8-09-2015, 22:07