Плазма четвертое состояние вещества

МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ

ГУМАНИТАРНЫЙ ИНСТИТУТ

физико-математический факультет

кафедра математики и физики

Курсовая работа на тему:

«Плазма – четвертое состояние вещества»

Выполнила студентка

физико-математического факультета

очного отделения

4 курса группы 4-м-1

Панкова А.О.

Научный руководитель:

Русаков О.В.

Орехово-Зуево

2010

Содержание

1. Введение: Что такое плазма? ………………………………………стр3

2. Основная часть:

1) Поведение плазмы в электрических и магнитных полях:

А) Плазма в электрическом поле …………………………..стр4

Б) Плазма в магнитном поле ………………………………...стр8

2) Устойчивость плазмы………………………………………стр18

3) Проблема удержания высокотемпературной плазмы…….стр20

4) Плазма во вселенной:

А) Откуда Солнце и звезды черпают свою энергию?.........стр26

Б) Как «устроено» Солнце?...................................................стр27

3. Заключение ……………………………………………………………стр32

4. Список использованной литературы………………………………..стр33

1.Введение

Что такое плазма?

Словом «плазма» (от греч. «плазма» — «оформленное») в середине XIX в. стали именовать бесцветную часть крови (без красных и белых телец) и жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881—1957) и Леви Тонко (1897—1971) назвали плазмой ионизованный газ в газоразрядной трубке.

Английский физик Уильям Крукс (1832—1919), изучавший электрический разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».

В зависимости от температуры любое вещество изменяет своё состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 °С - в жидком, выше 100 °С—в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны — ионизуются и газ превращается в плазму. При температурах более 1 000 000 °С плазма абсолютно ионизована — она состоит только из электронов и положительных ионов. Плазма — наиболее распространённое состояние вещества в природе, на неё приходится около

99 % массы Вселенной. Солнце, большинство звёзд, туманности — это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма.

Ещё выше располагаются радиационные пояса, содержащие плазму. Полярные сияния, молнии, в том числе шаровые, — всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии — планеты, астероиды и пылевые туманности.

Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т.е. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

2. Основная часть

1) Поведение плазмы в электрических и магнитных полях.

А) Плазма в электрическом поле.

Дебаевская сфера

Плазма состоит из огромного числа положительных и отрицательных зарядов, каждый из которых влияет на поведение всех остальных частиц плазмы. Так что на первый взгляд кажется, что движение одной заряженной частицы в электрическом поле очень мало относится к плазме. Строго говоря, это так. Но можно представить, что плотность частиц в плазме мала. Такую плазму называют разреженной. Так как частицы в ней находятся довольно далеко друг от друга, то их взаимодействием можно пренебречь и считать, что движение частиц определяется лишь действием внешнего поля.

Приведенное описание разреженной плазмы можно назвать моделью независимых частиц.

Рис.1 Рис.2

Кулоновское электрическое поле существует, как известно, во всем пространстве вокруг заряда (рис. 1); оно исчезает только на бесконечно большом расстоянии от заряда. Если же рассмотреть поле того же заряда в плазме, т.е. в совокупности большого числа разноименно заряженных частиц, то получается иная картина: поле данного заряда не простирается до бесконечности, а обрывается (как говорят физики, экранируется), начиная с некоторого расстояния (рис. 2). Это расстояние RD получило название дебаевского радиуса (по имени Немецкого физика Дебая). Дебаевский радиус определяется формулой

где Т—абсолютная температура, а n — концентрация электронов. Таким образом, электрическое поле заряженной частицы в плазме имеется только внутри сферы радиуса RD - Ее называют дебаевской сферой . Вне дебаевской сферы электрического поля нет. Так что частицы в плазме взаимодействуют друг с другом только тогда, когда они находятся на расстоянии, меньшем дебаевского радиуса.

Внутри сферы с дебаевским радиусом, который характеризует эффективное расстояние взаимодействия частиц, находится очень много заряженных частиц плазмы.

Согласно условию квазинейтральности плазмы концентрация отрицательно заряженных частиц должна мало отличаться от концентрации положительно заряженных частиц. Это условие выполняется, если линейные размеры l области, заполненной смесью заряженных частиц, намного больше дебаевского радиуса, т.е. l>>RD . Если же l<<RD , то условие квазинейтральности не выполняется. Таким образом, если в плазме выделить какую-либо заряженную частицу, то, собственно говоря, плазма находится за пределами дебаевской сферы, окружающей эту частицу.

Дебаевский радиус является очень важной характеристикой плазмы. В частности, он определяет так называемый ленгмюровский слой. Этот слой образуется при соприкосновении плазмы с твердым телом (например, с зондом). Так как электроны в плазме имеют большую скорость, чем ионы, то число электронов, попадающих на зонд, больше, чем число ионов. Поэтому зонд заряжается отрицательно. Между зондом и плазмой возникает электрическое поле, которое препятствует движению электронов. Когда движение электронов прекратится, вокруг отрицательно заряженного зонда возникает слой положительного заряда. Толщина этого слоя определяется величиной дебаевского радиуса RD .

Рассеяние заряженных частиц

Экранирование электрического поля заряда в плазме приводит к тому, что кулоновское взаимодействие заряженных частиц происходит только внутри дебаевской сферы. Значит, то, что было написано ранее о движении частицы в кулоновском поле, в плазме справедливо лишь на расстояниях, меньших дебаевского радиуса. Но внутри дебаевской сферы находится много заряженных частиц плазмы. Их движение называют рассеянием заряженных частиц кулоновским центром . Что под этим подразумевается? Представьте, что на неподвижный заряд, который называют рассеивателем, «падает» пучок заряженных частиц. Из-за взаимодействия с неподвижным зарядом каждая из частиц пучка отклоняется и притом по-разному. Это и есть рассеяние падающего пучка. Всякое рассеяние характеризуется эффективным сечением σ. Пучок нейтральных частиц (например, шариков) рассеивается только после непосредственного столкновения с рассеивающей частицей. Такие столкновения происходят в том случае, когда расстояние между центрами шариков меньше или хотя бы равно сумме радиусов шариков (рис. 3). Площадь круга с радиусом, равным сумме радиусов шариков, и есть в этом случае эффективное сечение рассеяния:

Рис. 3

Всякий налетающий шарик, «метящий» в такую площадь вокруг рассеивающего шарика, обязательно отклонится. Если же шарик не попадает в указанную мишень, он может пролететь, даже не «почувствовав» присутствия рассеивающего шарика. Другое дело, если мы имеем заряженные частицы. Они будут рассеиваться не только при непосредственном столкновении с рассеивающим центром, но даже проходя далеко от него. Ведь заряженные частицы взаимодействуют через свои электрические поля, совершенно не соприкасаясь друг с другом. В плазме кулоновское поле заряда обрывается (экранируется) на расстоянии, равном дебаевскому радиусу, поэтому при изучении рассеяния заряженных частиц в плазме рассматривают три характерные области: 1) область близких столкновений, 2) область далеких столкновений и 3) область, расположенная вне дебаевского радиуса.

В области «близких» столкновении из-за большой силы взаимодействия частиц происходит резкое искривление траектории.

В области «далеких» столкновении сила взаимодействия частиц мала, и траектория мало искривляется. Следует иметь в виду, что и в этом случае окончательное изменение направления вектора скорости может быть большим, так как действие слабой силы происходит на протяжении большого промежутка времени. Граница между областью «близких» и «далеких» столкновений очень условна. За верхнюю границу области «далеких» столкновений принимают дебаевский радиус.

Вне дебаевского радиуса кулоновского взаимодействия между частицами нет, и там начинается третья область, область коллективных, или плазменных, взаимодействий.

О столкновении можно говорить только условно (т.к. частицы взаимодействуют на расстоянии и друг с другом не сталкиваются), понимая под этим искривление траектории при взаимодействии. Заряженные частицы, рассеиваемые кулоновским центром, не изменяются при рассеянии. Поэтому это рассеяние можно рассматривать как упругое.

Чем больше скорость заряда (его кинетическая энергия), тем меньше эффективное сечение. Полю, рассеивающему заряженные частицы, «труднее» отклонить быстро движущиеся частицы, чем частицы, движущиеся медленно.

Эффективное сечение «далеких» столкновений в плазме примерно в 10 раз больше эффективного сечения «близких» столкновений. Это означает, что в плазме больший эффект дают «далекие» столкновения, чем близкие. Поэтому при изучении плазмы близкие столкновения часто совсем не учитывают.

Рис.4 Рис.5

А какова траектория заряженной частицы в плазме? Из-за непрерывного кулоновского взаимодействия траекторией частицы является какая-то плавная кривая линия. Поэтому говорить о столкновениях можно довольно условно. Следовательно, когда говорят о столкновении частиц плазмы, то подразумевают, что плавный путь частицы (рис. 5) мы заменяем приближенно ломаной кривой (рис.4), которая совершенно аналогична траектории нейтральной частицы.

«Убегающие» электроны

Сейчас остановимся на одном очень интересном явлении в плазме — явлении «убегающих» электронов. Его часто называют еще «просвистом» электронов. Оно состоит в том, что при некоторой величине напряженности электрического поля в плазме электроны начинают неограниченно ускоряться — двигаться со все большей и большей скоростью. Почему это происходит?

Электроны и ионы, помещенные в одно и то же электрическое поле, двигаются с разными скоростями. И на электрон, и на однозарядный ион в электрическом поле действуют одинаковые по величине силы. Но масса электрона почти в 2000 раз меньше массы иона. Поэтому из второго закона Ньютона следует, что ускорение электрона почти в 2000 раз больше ускорения иона. За один и тот же промежуток времени электрон приобретает гораздо большую скорость, чем ион. Значит, электрон более подвижен, чем ион. Движению электронов препятствуют столкновения с ионами. Но, чем больше скорость движущейся частицы (электрона), тем меньше сечение столкновений. Другими словами, электроны с большими скоростями почти не испытывают столкновений с ионами. В плазме электроны совершают тепловое движение. Поэтому имеет место определенное распределение электронов по скоростям. Это означает, что большая часть электронов движется с примерно одинаковыми скоростями, в то время как скорости остальных электронов имеют самые разнообразные значения.

В «хвосте» максвелловского распределения найдутся электроны, движущиеся с такой большой скоростью, при которой столкновения электронов с ионами не играют большой роли. Тогда, освободившись от сил, препятствующих движению, электрон начинает ускоряться электрическим полем. И чем большую скорость приобретают электроны, тем меньшее сопротивление своему движению они испытывают и, следовательно, ускоряются еще больше: электроны все дальше и дальше «убегают» из «хвоста» максвелловского распределения. В этом и состоит явление «просвиста» электронов в плазме.

Б) Плазма в магнитном поле.

Как удержать плазму?

Если создать однородное магнитное поле внутри прямой трубы, то заряды будут виться вокруг линий индукции магнитного поля, перемещаясь только вдоль трубы

(рис. 6).

Рис.6

Чтобы предотвратить уход частиц через концы трубы, - первое, что приходит в голову, - надо соединить оба конца трубы, т. е. согнуть трубку в «бублик». Труба такой формы называется тором. Можно предположить, что найдена ловушка заряженных частиц плазмы. Но стоит более внимательно приглядеться к данной ловушке, названной тороидальной магнитной ловушкой.

Прежде всего, линии индукции в этой ловушке являются не прямыми линиями, а окружностями. Это значит, что нужно ожидать центробежного дрейфа частиц к стенкам ловушки. Далее, магнитное поле создается внутри тора с помощью намотанной на него проволочной катушки, по которой пропускается ток. По необходимости витки с током располагаются ближе друг к другу на внутренней окружности тора, чем на внешней. Поэтому индукция магнитного толя увеличивается от внешней окружности тора к внутренней, т. е. индукция магнитного поля изменяется в направлении, перпендикулярном линиям индукции. Это значит, что нужно ожидать градиентного дрейфа частиц к стенкам ловушки.

Рис.7

Как видно из рис.7, на котором изображен разрез тороидальной ловушки, и градиентный, и центробежный дрейфы вызывают движение зарядов одного знака в одну и ту же сторону (положительные заряды дрейфуют вниз, а отрицательные - вверх). Возникает разделение зарядов: вверху образуется избыток отрицательных зарядов, а внизу - положительных. Это приводит к появлению электрического поля, которое перпендикулярно магнитному полю. А возникшее электрическое поле вызывает электрический дрейф частиц, и плазма как целое устремляется к наружной стенке - и гибнет. Итак, надежды удержать плазму в простой тороидальной ловушке не оправдываются.

Оказывается, замкнутой ловушке плазмы лучше придать форму восьмерки. Такая ловушка плазмы называется стелларатором от слова «стеллар» — звездный.

В ней надеялись воспроизвести условия для термоядерных реакций, какие имеются на звездах (высокая температура).

Магнитные «бутылки» и «пробки»

Итак, чтобы плазма не ускользала через концы прямой трубы, надо ее согнуть в «бублик» и создать в ней, винтовое магнитное поле. А нельзя ли в прямой трубе просто «заткнуть» ее концы какими-нибудь «пробками»? Ясно, что ни один материал для этой цели не подойдет, потому что он мгновенно испарится при тех колоссальных температурах, которые должна иметь термоядерная плазма. Значит, нужно подобрать невидимые, но крепкие магнитные пробки. Такие «пробки» действительно существуют. Ловушку с магнитными пробками называют «пробкотроном».

Рис.8

Представьте себе магнитное поле с линиями индукции, напоминающими горлышко бутылки (рис. 8). Пусть Z — ось симметрии магнитного поля. Разложим вектор индукции В магнитного поля в некоторой точке А на две составляющие: параллельно оси Z—ВII и перпендикулярную ей — В Если положительно заряженная частица движется перпендикулярно оси Z, то под действием составляющей поля ВII она будет вращаться по циклотронной окружности. Но вращающийся заряд представляет собой круговой ток, который находится в магнитном поле В . Это поле действует по закону Ампера на ток с силой, направление которой можно определить по правилу правого винта (рис. 8). В точке А ток направлен внутрь страницы. Поэтому сила Ампера направлена вправо, в сторону уменьшения поля. Так же вправо действует сила и в любой другой точке кругового тока. Таким образом, неоднородное магнитное поле стремится вытолкнуть циклотронный кружок в сторону ослабления поля (рис. 8). Вращающийся электрон выталкивается в ту же сторону. Дело в том, что в магнитном поле электроны и положительные ионы вращаются в противоположные стороны. Поэтому соответствующие им токи имеют одинаковые направления (движению электрона в каком-то направлении соответствует электрический ток в противоположном направлении). Следовательно, и электронный, и ионный циклотронные кружки выталкиваются в одну и ту же сторону.

Всякий круговой ток создает вокруг себя собственное магнитное поле, направление которого определяется по правилу правого винта. Значит, и циклотронный кружок, создавая такое поле, обладает свойствами магнита. Его можно характеризовать магнитным моментом. Численное значение магнитного момента определяется по формуле

M=IS,

где I— сила тока, S — площадь, ограниченная контуром с током (площадь циклотронного кружка).

Оказывается, что если скорость частицы перпендикулярна магнитному полю, то магнитный момент ее циклотронного кружка равен отношению кинетической энергии частицы к индукции магнитного поля:

Если же скорость частицы направлена под каким-то углом α к силовым линиям магнитного поля, то в данную формулу надо вместо полной скорости v подставить «поперечную» составляющую скорости частицы

«Продольная» составляющая скорости

Рис.9

приводит к движению заряда вдоль линий индукции магнит­ного поля (рис. 9). Таким об­разом, более общей является формула

Оказывается, что когда магнитное поле является слабо неоднородным (рис. 8), то

величина магнитного момента частицы, движущей­ся в таком поле, остается постоянной. Из постоян­ства магнитного момента вытекают интересные и очень важные выводы. Представьте себе, что частица движется в слабо неоднородном магнитном поле в сторону уве­личения его индукции. Тогда из-за того, что магнитный момент остается постоянным, поперечная составляющая вектора скоростидолжна увеличиваться. Но мы уже говорили, что в магнитном поле величина ско­рости частицыv не изменяется. Поэтому должен увели­чиваться угол α. Но тогда продольная составляющая скорости будет уменьшаться (cosα уменьшается с увеличением угла α). Следовательно, когда заряженная частица движется в магнитном поле в сторо­ну увеличения его индукции, ее поперечная скорость уве­личивается, а продольная скорость vII уменьшается. При этом в каком-то месте магнитного поля продольная ско­рость vII может стать равной нулю. Это произойдет при α = 90° (cosα = 0). Тогда поперечная скорость становится максимальной:. Но если продольная скорость равна нулю, то это означает, что частица перестает двигаться вдоль линий индукции магнитного поля, а только вра­щается по циклотронной окружности со скоростью . Но ведь циклотронный кружок находитсяв неоднород­ном магнитном поле! Это приводит, как мы уже знаем, к тому, что кружок выталкивается в область с меньшей индукцией магнитного поля. Таким образом, бутылкооб­разное магнитное поле «закупорено» магнитной «пробкой»; частицы не могут выскочить через «горлышко» этой «бутылки». Если с обеих сторон прямой трубы создать магнитное поле бутылкообразного типа, то она будет закупорена магнитными «пробками». Получается магнитная ловушка заряженных частиц.


9-09-2015, 00:08


Страницы: 1 2 3 4
Разделы сайта