Основные направления биомеханики

уровневом построении движений сыграла важную роль в дальнейшей разработке физиологического направления в биомеханике. Глубокое изучение действительных явлений в самом опорно-двигательном аппарате вызвало особое внимание к управлению движениями. Выявленные особенности управления движениями показали, насколько были неверны прежние упрощенные объяснения механизма движений.

Системно-структурный подход. Системно-структурный подход в биомеханике характеризуется изучением состава и структуры систем как в двигательном аппарате, так и в его функциях. Этот подход в известной мере объединяет механическое, функционально-анатомическое и физио­логическое направления в развитии теории биомеханики.

По современным представлениям, опорно-двигательный аппарат рассматривается как сложная биомеханическая система; движения человека также изучаются как сложная целостная система.

Понятие о системе, в которой множество элементов (ее состав) закономерно объединено взаимными связями, взаимозависимостью (ее структура), характерно для современного научного представления о мире. Системно-структурный подход требует изучения системы как единого целого, потому что ее свойства не сводятся к свойствам отдельных элементов. Важно изучать не только состав, но и структуру системы, рассматривать во взаимосвязи строение и функцию.

Идеи о системности внес в изучение двигательной деятельности также Н.А. Бернштейн. Кибернетический, по сути дела, подход к движениям был им осуществлен более чем за 10 лет до оформления кибернетики как самостоятельной науки.

Современный системно-структурный подход не только не отрицает значения в биомеханике всех направлений, а как бы объединяет их; при этом каждое направление сохраняет в биомеханике свое значение.

тестирование двигательных качеств

Описание методов тестирования, применяемых для биомеханического контроля в физическом воспитании и спорте, начнем с тестов, позволяющих оценить уровень развития двигательных качеств. На этой основе учитель физкультуры или тренер может выбирать из числа известных или самостоятельно создавать тесты, необходимые ему в практической работе.

Биомеханические тесты выносливости позволяют установить, какой объем работы человек может выполнить и как долго может работать без снижения эффективности двигательной деятельности. Например, при беге с постоянной скоростью наступает момент, когда человек не может поддержать исходную длину шага (компенсированное утомление), а спустя еще некоторое время он вынужден снизить скорость (декомпенсированное утомление) (рис.1). Чем выносливее человек, тем дольше не наступает утомление.

Вместо скорости можно программировать длину дистанции и измерять минимальное время, за которое человек справляется с заданием. Этот тест аналогичен соревновательному упражнению в циклических видах спорта.

Есть и третий вариант теста, когда ограничивается продолжительность упражнения и измеряется преодоленное расстояние. Известно несколько разновидностей этого теста: 60-минутный беговой тест, 7-минутный тест для гребцов, разные варианты теста Купера (беговой, плавательный и т.п.).

Согласно правилу обратимости двигательных заданий все три разновидности теста на выносливость эквивалентны (табл.1), т.е. при тестировании группы людей наиболее выносливые в одном из этих трех тестов будут наиболее выносливыми и в двух других.

Примечание. Для тестирования выносливости используют не только циклические локомоции, но и другие физические упражнения, поэтому скорость передвижения - частный случай интенсивности мышечной работы, а преодоленное расстояние - частный случай объема выполненной работы.


Рис 1. Измерение скорости, длины шаг и частоты шагов (темпа) у человека, выполняющего тест на выносливость: 1. Компенсированное утомление. 2. Декомпенсированное утомление.

Тестирование силовых качеств осуществляется либо в упражнениях статического характера, либо в таких общеразвивающих упражнениях, где выполняется локальная или регионарная мышечная работа. В первом случае мерой силовых возможностей служит величина проявляемой силы (Fo) и продолжительность ее удержания. Во втором случае определяется, сколько раз подряд человек может сжать или растянуть пружину динамометра, подтянуться, отжаться и т.п. Конкретных упражнений, в которых оцениваются силовые качества, очень много. Это неудивительно, ведь двигательный аппарат человека включает в себя около 600 мышц, которые по-разному взаимодействуют в различных упражнениях.

Таблица 1


Проявляемая человеком сила зависит от позы, от углов в суставах. Влияние суставного угла на проявляемую силу иллюстрирует рис.28. Изображенный на нем график показывает, что, например, оптимальный угол в локтевом суставе близок к 80°. В этом случае угол между направлением тяги двуглавой мышцы плеча и костями предплечья близок к 90°.

Вообще говоря, измерение силы можно проводить при любой величине суставного угла. Важно лишь, чтобы он всегда был одним и тем же.

Рис 2. Сила тяги мышцы, необходимая для удержания груза в зависимости от величины суставного угла.

Рис 3. Шкала для оценивания силовой подготовленности по результатам сгибания и разгибания рук в упоре лежа у людей разного возраста (слева – свыше 30 лет, справа – до 30 лет).


Таблица 2

Общепринятым тестом силовых качеств является подтягивание на перекладине. Но далеко не каждый может подтянуться на высокой перекладине. Поэтому полезен тест, в котором человек выполняет возможно большее число подтягиваний на низкой перекладине (см. рис.4), и соответствующие педагогические шкалы (табл.2). С той же целью можно использовать «отжимания» (рис.3) и другие общедоступные упражнения

Тестирование скоростно-силовых качеств осуществляется в упражнениях, позволяющих продемонстрировать и силу, и быстроту. Для этого издавна использовали прыжки в высоту и в длину с места.

Для более глубокого анализа скоростно-силовых качеств регистрируют динамограмму (Динамограммой (от греческого dynamis - сила) называется график изменения проявляемой силы во времени) прыжка или другого «взрывного» упражнения и вычисляют градиент силы (т.е. отношение приращения силы к интервалу времени, за которое это приращение произошло).

Градиент силы неодинаков на разных участках динамограммы. Обычно в начале движения он больше, чем в конце. Поэтому вычисляют скоростно-силовой индекс - частное от деления разности между максимальным и минимальным значениями проявляемой силы на величину временного интервала, за который это изменение произошло. Чем выше скоростно-силовая подготовленность, тем больше скоростно-силовой индекс, так как большая сила достигается за меньшее время.

При выполнении многих физических упражнений приходится преодолевать силу тяжести своего тела. В этих случаях наиболее информативный показатель скоростно-силовых качеств - не скоростно-силовой индекс, а коэффициент реактивности. Коэффициент реактивности равен скоростно-силовому индексу, деленному на вес тела.

Тестирование гибкости чаще всего связано с измерением углов между звеньями тела (рис.4). Делается это гониометрами (угломерами). Существуют и другие методы контроля за гибкостью (рис.5).

Рис 4. Тестирование гибкости: измеряется угол между бедрами.

Рис 5. Тестирование гибкости: измеряется расстояние между руками и ногами.


Гибкость занимает особое положение среди двигательных качеств. Тем, кто занимается в группах здоровья и руководит ими, особенно важно помнить, что «потеря гибкости равносильна началу старости». Для каждодневного контроля за гибкостью рекомендуются наклоны вперед с прямыми ногами, выполняемые на ступеньке, к которой вертикально приставлена линейка с сантиметровыми делениями. Гибкость оценивается расстоянием от кончиков пальцев руки до опоры.1 см на линейке соответствует одному очку. Нормальной считается гибкость, оцениваемая в ноль очков; в этом случае испытуемый достает кончиками пальцев до опоры. Если, не сгибая коленей, удается дотянуться еще ниже, гибкость оценивается тем или иным положительным числом очков. У человека, не дотянувшегося до опоры, оценка гибкости отрицательна. Например, минус 25 очков получает тот, у кого в положении наклона концы пальцев на 25 см выше опоры.

Различают активную и пассивную гибкость. Активную гибкость человек демонстрирует сам, без посторонней помощи. Пассивная гибкость проявляется при приложении внешней силы. Понятно, что пассивная гибкость выше активной.

заключение

В настоящее время характерными чертами современного спорта является значительное его омоложение и неуклонный рост спортивного достижения.

Посвящая себя исследовательской работе, на первый взгляд кажется, что современная наука не оставила нерешённых проблем. В тоже время для практики, как бы совершенна она не была, всегда характерно стремление добиться результата быстрее и с меньшей затратой сил и средств. То есть повысить качество, производительность и эффективность общественного труда. В связи с этим возникает проблемная ситуация, связанная с необходимостью создания новых методов, технологии, приёмов производства, обучения.

Повышение функциональных возможностей организма учащихся является одной из основных задач школьного физического воспитания. Однако в последние годы стало появляться множество научных данных о низком уровне физической подготовленности большой части школьников нашей страны

Процесс совершенствования методических подходов к повышению функциональных возможностей организма школьников стимулирует поиск новых, более рациональных путей решения данной проблемы. Одним из основных направлений в этом является дифференцированный подход к учащимся, подразумевающий тщательное изучение индивидуальных особенностей каждого из них, с последующим распределением школьников по сходным типологическим признакам на определенные группы с учетом задач учебного процесса.

литература

1. Ашмарин Б.А., Виноградов Ю.А., Вяткина З.Н., и др. Теория и методика физического воспитания: учеб. Для студентов фак. культ. пед. Ин-тов по спец.03.03. – М.: просвещение, 1990. – 287с.

2. Н.А. Бернштейн Биомеханика и физиология движений. М.: МОДЭК, МПСИ. – 2004 г. . – 688 стр.

3. Основные направления научных исследований в области биомеханики спорта за рубежом (1980-1986): Обзор. информ. / ВНИИ физ. культуры; Подгот. М.П. Дементьевой 33 с.20 см М. Отд. исслед. и разраб. НТИ "Спорт" 1986 1987

4. Федорова В.Н., Дубровский Владимир, Дубровский В.И. Федорова В.Н. Биомеханика. Владос гуманитарный издательский центр, 2003 г. – 672 с.




8-09-2015, 20:02

Страницы: 1 2
Разделы сайта