Медицинские датчики

частотой повторения 8 МГц и длительностью 1 мкс.

Доплеровским измерительным системам, работающим в импульсном режиме, присуще внутреннее ограничение. Оно выражается в том, что при заданной дальности ограничен диапазон измеряемых скоростей. Это вынуждает использовать импульсы с меньшей частотой повторения fr Это означает, что нельзя измерить высокие скорости при больших расстояниях до отражающего объекта. Спектральное уширение, которое может привести к появлению в сигнале спектральных составляющих с частотами, превышающими несущую частоту, а также неидеальность характеристик фильтров нижних частот, используемых для исключения эффекта наложения спектров, приводит к еще более жестким ограничениями.

В импульсных доплеровских системах преобразователи имеют более сложную конструкцию, чем в доплеровских системах непрерывного действия. Любой кристаллический преобразователь характеризуется высокой добротностью Q (узкой частотной характеристикой) и поэтому после окончания возбуждающего электрического сигнала довольно долго осциллирует на своей резонансной частоте. Импульсный доплеровский преобразователь модифицируется путем добавления к нему спереди или сзади массивного демпфера, что обеспечивает уменьшение (уширение частотной характеристики) кристалла. Типичные значения модифицированной добротности - от 5 до 15. При использовании одного общего преобразователя в качестве излучателя и приемника отключение излучателя осуществляется с помощью логического элемента (вентиля). Однокаскадный логический элемент не обеспечивает надлежащей развязки мощного сигнала, возбуждающего излучатель, от исключительно слабого принимаемого сигнала. Проблема развязки решается последовательным включением двух логических элементов.

При использовании импульсных доплеровских систем возникают дополнительные проблемы и с обработкой принимаемого сигнала. В система должна быть предусмотрена некоторая схема, обеспечивающая защиту усилителя высокой частоты от перегрузок во время передачи сигнала и предотвращающая поступление напряжения генератора на вход этого усилителя во время приема сигнала. Примером такой схемы является диодная структура, обладающая низким сопротивлением для высокоуровневого передаваемого сигнала и высоким сопротивлением для слабого принимаемого сигнала. Измерение профилей потока в реальном масштабе времени достигается путем использования 16 логических элементов (селекторов дальности), задающих различные временные задержки для принимаемого сигнала. На выходе измерительного устройства имеем при этом 16 “параллельных” сигналов, соответствующих различным точкам в поперечном сечении трубы или кровеносного сосуда и определяющих временную зависимость локальных скоростей потока в этих точках. Профиль скорости формируется путем быстрого сканирования по этим 16 каналам.

Главное преимущество импульсных доплеровских измерителей потока - возможность получения информации о профиле потока. Кроме того, в этих устройствах детектируются сигналы, отражаемые частицами из малых объемов текучей среды (в силу сканирования по поперечному сечению потока), и поэтому на детекторы нуля поступают сигналы с узким частотным спектром, что является другим важным преимуществом измерителей потока этого типа. И, наконец, поскольку для импульсного доплеровского измерителя потока нужен только один преобразователь, выполняющий функцию, как излучателя, так и приемника, то это - идеальное устройство для измерений с помощью катетера. Такие измерители используются для регистрации кровотока в различных участках кровеносной системы.

  1. Датчики давления.

Датчики давления семейства Senseon фирмы Motorola выбирают производители медицинского оборудования по всему миру. Они долговечны, точны и надежны.

Датчик давления фирмы Motorola разработан с использованием монолитного кремниевого пьезорезистора, который генерирует изменяющееся в зависимости от величины давления напряжение на выходе. Резистивный элемент, который представляет собой датчик напряжений, ионно имплантирован в тонкую кремниевую диафрагму. Малейшее давление на диафрагму приводит к изменению сопротивления датчика напряжений, что в свою очередь изменяет напряжение на выходе пропорционально приложенному давлению. Датчик напряжений является составной частью диафрагмы, благодаря чему устраняются температурные эффекты, возникающие из-за разницы в тепловых расширениях датчика и диафрагмы. Параметры на выходе самого датчика деформаций зависят от температуры, так что при использовании в диапазоне температур, превышающих допустимые значения, требуется компенсация. В узких диапазонах температур, например от 00 С до 850 С, в этом качестве может быть использована простая резисторная схема. В диапазоне температур от –400 С до +1250 С потребуются расширенные компенсационные схемы.

Компенсированные и калиброванные (на чипе). Медицинский класс.

Серия

Максимальный уровень давления

Напряжение питания

(V dc)

Допустимое отклонение, mV (Max)

Чувствительность (µV/V/mmHg)

Полное выходное сопротивление Ом (Max)

линейность % от полного диапазона

psi

кПа

(Min)

(Max)

MPX2300DT1

5.8

40

6.0

0.75

5.0

330

-2.0

2.0

Серии МРХ 7050, 7100, 7200

Датчики этих серий сочетают в себе все преимущества серии МРХ 2000 (температурная компенсация и калибрация на чипе) с высоким полным входным сопротивлением (обычно 10 kОм), что делает их незаменимыми в переносных устройствах, работающих на аккумуляторах. Эти датчики могут использоваться в приборах, требующих точного определения давления при малом потреблении энергии, таких как переносное медицинское оборудование и т.п.

МЕДИЦИНСКИЕ ДАТЧИКИ ДАВЛЕНИЯ (MEDICAL)

Тип датчика

Возможные исполнения (тип корпуса , порта, форма выводов, упаковка)

Рабочий диапазон

Макс. доп. давление

Начальное смещение

Размах выходного напряжения (типовое значение)

Чувствительность

Линейность

Температурный коэффициент начального смещения

Напряжение питания

Ток потребления (типовое значение)

Вых. сопротивление

Pressure Range

Over-pressure

Zero pressure Offset

Full Scale Span (VFSS)

Sensitivity

Linearity

Temperature Effect on Offset

Supply Voltage

Supply Current

Output Impedance

kPa

mV

mV

%VFSS

V

mA

MPXC2011DT1

MPXC2011DT1

0...10 kPa
(75mmHg)

75

± 1,0

25

2,5mV/kPa

± 1,0

± 1,0 mV

3

6

1,4...3 kΩ

MPX2300D

MPX2300D*
MPX2300DT1
MPX2300DT1-001*

0...300mmHg

-

± 0,75

2,976...3.036
(3,006)

5,0
mV/V/mmHg

± 1,5

± 9,0mV/°C

6

1

330 Ω

* - Датчики, не рекомендованные для дальнейшего использования
Диапазон рабочих температур всех медицинских датчиков +15°С ...+45°С

Таблица 3.3 – Некоторые датчики давления фирмы MOTOROLA

Device Series

Max Pressure Rating

Over Pressure (kPa)

Offset mV (Typ)

Full Scale (mV/kPa)

Sensitivity (mV/kPa)

Linearity % of FSS (1) (Min) (Max)

KPa

Некомпенсированные

MPX10D

10

75

20

35

3.5

-1.0

1.0

MPX 50D

50

200

20

60

1.2

-0.25

0.25

MPX700D

700

2800

20

60

0.086

-0.50

0.50

Компенсированные и калиброванные

MPX2010D

10

75

+-1.0

25

2.5

-1.0

1.0

MPX2700A

700

2800

+-2.0

40

0.057

-1.0

1.0

MPX2700D

700

2800

+-1.0

40

0.057

-0.5

0.5

High Impedance (On-Chip)

MPX7050D

50

200

+-1.0

40

0.8

-0.25

0.25

MPX7200A

200

400

+-2.0

40

0.2

-1.0

1.0

MPX7200D

200

400

+-1.0

40

0.2

-0.25

0.25

Signal Conditioned (On-Chip)

MPX4100A

105

400

-

4.59

54

-1.8

1.8

MPX5700D

700

2800

-

4.5

6.0

-2.5

2.5

MPX5999D

1000

4000

-

4.7

5.0

-2.5

2.5

Compensated and Calibrated (On-Chip) Medical Grade

MPX2300DT1

40

-

0.75

-

330

-2.0

2.0

5. Температурные датчики. Термисторы.

Одной из наиболее распространенных задач промышленной, бытовой и медицинской автоматики, решаемых путем температурных измерений, является задача выделения заданного значения температуры или диапазона температур, в пределах которого контролируемые физические процессы протекают нормально, с требуемыми параметрами. Это, в первую очередь, относится к приборам и устройствам, работающим при температурах, определяемых условиями жизнедеятельности человека и используемых им при этом приборов машин и механизмов, т.е. –40º +100°С, например, кондиционирование температуры жилых, складских и технологических помещений, контроль нагрева различных двигателей, трансмиссий, тормозных устройств и т.п., системы пожарной сигнализации, контроль температуры в медицине, биотехнологиях и сельском хозяйстве и пр. В качестве чувствительных элементов таких систем в последнее время широко используются полупроводниковые термосопротивления с отрицательным температурным коэффициентом или термисторы (NTC-thermistors). Однако, для решения задачи в целом, т.е. получения электрического сигнала, возникающего при повышении или понижении температуры контролируемого процесса до заданного значения, термистор должен быть снабжен дополнительными электронными схемами, которые и осуществляют решение задачи выделения заданного значения температуры. В Институте проблем управления РАН совместно с фирмой VZ SENSOR Ltd., на основе полупроводниковых структур с L-образной вольтамперной характеристикой были разработаны интеллектуальные (функциональные) термисторы (Z-thermistors), которые способны решать задачу выделения заданного значения температуры без использования дополнительных электронных схем .

Схема включения обычного термистора

Схема включения Z-термистора

Z-термисторы представляют собой полупроводниковую p-n структуру, включаемую в прямом направлении (+ к p-области структуры) в цепь источника постоянного напряжения. Структура обладает функцией перехода из одного устойчивого состояния (с малым током) в другое устойчивое состояние (в 50 - 100 раз большим током) при ее нагреве до заданного значения температуры. Установка требуемого значения температуры срабатывания осуществляется простым изменением напряжения питания. Длительность перехода структуры (Z-термистора) из одного устойчивого состояния в другое 1 - 2 мкс. Схема включения Z-термистора состоит из источника питания U и нагрузочного резистора R, который одновременно служит ограничителем тока Z-термистора при его переходе в состояние с большим током (рис.). Выходной сигнал (бросок напряжения) может быть снят как с нагрузочного резистора R, так и с самого Z-термистора, но с обратным знаком. Как уже было сказано, Z-термистор может быть настроен на любое значение температуры в диапазоне –40 -+100°С путем изменения питающего напряжения U. При этом могут быть изготовлены разные типы Z-термисторов, срабатывающие при одной и той же температуре от разных напряжений питания. Для того, чтобы разделить Z-термисторы по типам, было введено понятие базовой температуры. В качестве базовой было принято значение комнатной температуры (room temperature) +20°С. Принципиально Z-термисторы могут быть изготовлены на любые напряжения срабатывания в пределах от 1 до 100 В при базовой температуре, но для удобства пользователей мы ограничились рядом типовых значений напряжения, чаще всего используемых в электронной технике, а именно: 1,5 В; 3 В; 4,5 В; 9 В; 12 В; 18 В; 24 В (см. таблицу).

Таблица - Технические характеристики Z-термисторов при температуре +20°C и сопротивлении резистора R = 0.25 + 5 кОм

Тип Z-термистора

TZ-1

TZ-3

TZ-4

TZ-12

TZ-18

TZ-24

Пороговое напряжение

Uth (B)

<1,5

3+-0,5

4,5+-1

12+-2

18+-3

24+-3

Пороговый ток

Ith (mA)

<0,05

<0,1

<0,15

<0,2

<0,25

<0,35

Вторичное напряжение

Uf (B)

<0,7

<1,5

<2

<5

<8

<10

Вторичный ток

If (mA)

>1,5

>1,7

>3

>2,5

>3

>3,5

Выходной сигнал

UR (B)

>0,5 Uth

"

"

"

"

"

Рассеиваемая мощность

P(mBт)

<100

"

"

"

"

"

Длительность перехода Uth -Uf

t(мкс)

<5

"

"

"

"

"

Разрешающая способность

Т(°C)

<0,1

"

"

<<0,1

"

"

Чувствительность участка 1

S1 (мВ/°C)

>10

"

"

>30

"

"

Чувствительность участка 2

S2 (мВ/°C)

>20

"

"

>60

"

"

Чувствительность участка 3

S3 (мВ/°C)

>200

"

"

>400

"

"

Быстродействие

Т(сек)

<1

"

"

<<1

"

"

Диапазон рабочих температур: -20 + 100 °C

Диапазон пороговых напряжений: 60 - 0,5 B

Размеры Z-термисторов: 1 x 1 x 0,3; 2 x 2 x 0,3; 3 x 1,5 x 0,3 mm

Маркировка Z-термисторов: TZ-(1; 3; 4; 12; 18; 24)

Здесь: T - функциональный тип сенсора (Thermistor);

Z - физический принцип действия (Z-эффект);

(1; 3; 4; 12; 18; 24) - пороговое напряжение при 20°C

Z-термисторы могут быть использованы не только как высокоточные, надежные и простые в эксплуатации сигнализаторы заданного значения температуры, но также, как температурные сенсоры для непрерывного измерения температуры, приблизительно в том же диапазоне (-40 - +100°С). Для этого могут быть использованы участки 1,2,3 ВАХ (рис.). При этом, зная нижний и верхний пределы измерений температуры, (например, для медицинского термометра +34° - +43°С), напряжение питания выбирается таким, чтобы значение токов термистора, соответствующие этим пределам измерений, находились на выбранном участке ВАХ. Точностные возможности Z-термисторов при их использовании как в пороговом режиме, так и в режиме непрерывных измерений практически полностью определяются стабильностью питающего напряжения и лежат в пределах 0,1 - 0,01°С. Большой интерес с практической точки зрения представляет собой возможность использования Z-термисторов в частотно-импульсном режиме работы. Для этого параллельно Z-термистору подключают


8-09-2015, 21:01


Страницы: 1 2 3
Разделы сайта