Проблема безопасности продуктов питания и их воздействие на организм человека

жирами, углеводами и витаминами — в организм человека должны поступать минеральные элементы. Минеральные элементы не являются источниками энергии в организме. Тем не менее без них невозможны нормальные процессы жизнедеятельности.

Из 104 известных элементов периодической системы Д. И.Менделеева 'в живом веществе найдено уже около 60 элементов. Часть из них рассматриваются как случайные примеси, которые попадают с пищевыми продуктами, воздухом, водой и не используются организмом для биологических целей. Для большей части минеральных веществ установлено определенное участие в многообразных физиологических функциях.

Минеральные элементы находятся в организме в неодинаковом количестве и в разных формах соединений. Содержание некоторых из них может быть значительным (макроэлементы) и достигать нескольких граммов. К числу этих элементов относятся кальций, фосфор, магний, калий, натрий и др. Содержание их в организме человека составляет: кальция 1,5%, фосфата 1%, калия 0,35%, натрия 0,15%, магния 0,05% и железа 0,004%.

Другие минеральные элементы (микро- и ультрамикроэлсмситы) входят в состав тела в очень малых концентрациях — от тысячных до десятитысячных долей миллиграмма и менее. К таким элементам относятся йод, медь, кобальт, марганец, цинк и др.

Минеральный состав тела человека определяется в основном характером питания и во многом зависит от состава пищевых продуктов в рационе как животного, так и растительного происхождения. Содержание минеральных веществ в тканях животных в свою очередь колеблется в широких пределах и зависит от вида и условий жизни животных, питания, их возраста, района обитания. Ткани морских животных богаче минеральными веществами, чем ткани пресноводных животных. Содержание минеральных элементов увеличивается с возрастом. Растения и животные в местности, расположенной вблизи морей и океанов — основных резервуаров йода в природе, богаче йодом, чем в местности, удаленной от них.

Изучением распределения минеральных элементов в природе занимается особая отрасль науки — биогеохимия. На основе данных этой науки установлена тесная связь химического состава земной коры. Акад. А. П. Виноградовым разработано учение о так называемых биогеохимических провинциях — территориях, характеризующихся определенными особенностями в распределении и содержании минеральных элементов в почве, водах, растениях и животных организмах. Недостаток или избыток некоторых минеральных элементов в этих районах приводит к развитию массовых заболеваний, получивших название эндемических, т. е. свойственных определенным районам.

Минеральные элементы находятся в тканях человека и животных в виде полностью или частично растворимых соединении, соединений с органическими веществами или соединений, адсорбированных коллоидами. Изменение формы соединений меняет биологическую активность минеральных элементов, и это может иметь гораздо большее значение для физиологических функций организма, чем общее количество минеральных веществ в тканях.

2. Механизм токсического действия нитритов в организме человека

Впервые заговорили о нитратах в нашей стране в 70-х годах, когда в Узбекистане случилось несколько массовых желудочно-кишечных отравлений арбузами, при их чрезмерной подкормке аммиачной селитрой.

В мировой науке о нитратах знали уже гораздо раньше. Сейчас общеизвестно, что нитраты обладают высокой токсичностью для человека и сельскохозяйственных животных :

1) Нитраты под воздействием фермента нитратредуктазы восстанавливаются до нитратов, которые взаимодействуют с гемоглобином крови и окисляют в нём 2-х валентное железо в 3-х валентное. В результате образуется вещество метгемоглобин, который уже не способен переносить кислород. Поэтому нарушается нормальное дыхание клеток и тканей организма (тканевая гипоксия), в результате чего накапливается молочная кислота, холестерин, и резко падает количество белка.

2) Особенно опасны нитраты для грудных детей, т.к. их ферментная основа несовершенна и восстановление метгемоглобина в гемоглобин идёт медленно.

3) Нитраты способствуют развитию патогенной (вредной) кишечной микрофлоры, которая выделяет в организм человека ядовитые вещества токсины, в результате чего идёт токсикация, т.е. отравление организма. Основными признаками нитратных отравлений у человека являются:

¨ синюшность ногтей, лица, губ и видимых слизистых оболочек;

¨ тошнота, рвота, боли в животе;

¨ понос, часто с кровью, увеличение печени, желтизна белков глаз;

¨ головные боли, повышенная усталость, сонливость, снижение работоспособности;

¨ одышка, усиленное сердцебиение, вплоть до потери сознания;

¨ при выраженном отравлении - смерть.

4) Нитраты снижают содержание витаминов в пище, которые входят в состав многих ферментов, стимулируют действие гормонов, а через них влияют на все виды обмена веществ.

5) У беременных женщин возникают выкидыши, а у мужчин - снижение потенции.

6) При длительном поступлении нитратов в организм человека (пусть даже в незначительных дозах) уменьшается количество йода, что приводит к увеличению щитовидной железы.

7) Установлено, что нитраты сильно влияют на возникновение раковых опухолей в желудочно-кишечном тракте у человека.

8) Нитраты способны вызывать резкое расширение сосудов, в результате чего понижается кровяное давление.

При всём вышеизложенном следует помнить, вред наносят организму человека не сами нитраты, а нитриты, в которые они превращаются при определённых условиях.

Для взрослого человека предельно допустимая норма нитратов 5мг на 1кг массы тела человека, т.е. 0,25г на человека весом в 60кг. Для ребёнка допустимая норма не более 50мг.

Сравнительно легко человек переносит дневную дозу нитратов в 15-200мг; 500мг - это предельно допустимая доза (600мг - уже токсичная доза для взрослого человека). Для отравления грудного малыша достаточно и 10мг нитратов.

В Российской Федерации допустимая среднесуточная доза нитратов - 312мг, но в весенний период реально она может быть 500-800мг/сутки.

Нитраты попадают в организм человека через различные пути (9).

1. Через продукты питания:

а) растительного происхождения;

б) животного происхождения;

2. Через питьевую воду.

3. Через лекарственные препараты.

Основная масса нитратов попадает в организм человека с консервами и свежими овощами (40-80% суточного количества нитратов).

Незначительное количество нитратов поступает с хлебобулочными изделиями и фруктами; с молочными продуктами попадает их - 1% (10-100мг на литр).

Часть нитратов может образоваться в самом организме человека при его обмене веществ.

Также нитраты поступают в организм человека с водой, которая является одним из основных условий нормальной жизни человека. Загрязнённая питьевая вода вызывает 70-80% всех имеющихся заболеваний, которые на 30% сокращают продолжительность жизни человека. По данным ВОЗ по этой причине заболевает более 2млрд человек на Земле, из которых 3,5млн умирает (90% из них составляют дети младше 5 лет). В питьевой воде из подземных вод содержится до 200мг/л нитратов, гораздо меньше их в воде из артезианских колодцев. Нитраты попадают в подземные воды через различные химические удобрения (нитратные, аммонийные), с полей и от химических предприятий по производству этих удобрений. Наибольшее количество нитратов содержится в грунтовых водах, а значит, и в колодезной воду. Обычно жители городов пьют воду, где содержится до 20мг/л нитратов, жители же сельской местности - 20-80мг/л нитратов.

Нитраты содержатся и в животной пище. Рыбная и мясная продукция в натуральном виде содержит немного нитратов (5-25мг/кг в мясе, и 2-15мг/кг в рыбе). Но нитраты и нитриты добавляют в готовую мясную продукцию с целью улучшения её потребительских свойств и для более длительного её хранения (особенно в колбасных изделиях). В сырокопчёной колбасе содержится нитритов 150мг/кг, а в варёной колбасе - 50-60мг/кг.

Также нитраты попадают в организм человека через табак. Выяснено, что некоторые сорта табака содержат до 500мг нитратов на 100г сухого вещества.

Очень важно не только знать в каких растениях, в каких их органах и частях содержатся в основном нитраты, но и не менее важно надо знать, как уменьшить содержание этих ядовитых веществ для организма, поэтому предлагается ряд ценных советов:

1) Снижается количество нитратов при термической обработке овощей (13) (мойке, варке, жарке, тушении и бланшировке). Так, при вымачивании - на 20-30%, а при варке на 60-80%.

¨ в капусте - на 58%;

¨ в столовой свекле - на 20%;

¨ в картофеле - на 40%.

При этом следует помнить, что при усиленной мойке и бланшировании (обваривании кипятком) овощей в воду уходят не только нитраты, но и ценные вещества: витамины, минеральные соли и др.

2) Чтобы снизить количество нитратов в старых клубнях картофеля, его клубни следует залить 1%-ным раствором поваренной соли.

3) У паттисонов, кабачков и баклажанов необходимо срезать верхнюю часть, которая примыкает к плодоножке.

4) Т.к. нитратов больше в кожуре овощей и плодов, то их (особенно огурцы и кабачки) надо очищать от кожуры, а у пряных трав надо выбрасывать их стебли и использовать только листья.

5) У огурцов, свеклы, редьки к тому же надо срезать оба конца, т.к. здесь самая высокая концентрация нитратов.

6) Хранить овощи и плоды надо в холодильнике, т.к. при температуре +2°С невозможно превращение нитратов в более ядовитые вещества - нитриты.

7) Чтобы уменьшить содержание нитритов в организме человека надо в достаточном количестве использовать в пищу витамин С (аскорбиновую кислоту) и витамин Е , т.к. они снижают вредное воздействие нитратов и нитритов (4).

8) Выяснено, что при консервировании уменьшается на 20-25% содержание нитратов в овощах, особенно при консервировании огурцов, капусты, т.к. нитраты уходят в рассол и маринад, которые поэтому надо выливать при употреблении консервированных овощей в пищу.

9) Салаты следует готовить непосредственно перед их употреблением и сразу съедать, не оставляя на потом.

Проблема токсичного накопления нитратного азота в сельскохозяйственной продукции и вредного воздействия его на человека и сельскохозяйственных животных на современном этапе является одной из наиболее острых и актуальных.

Решением этой задачи заняты многие научно-исследовательские учреждения всего мира, но несмотря на пристальное внимание к этой проблеме до сих пор радикального решения пока не найдено.

3. Антиалиментарные факторы питания

По мнению академика А. А. Покровского, к антиалиментарным факторам относят соединения, не обладающие общей токсичностью, но обладающие способностью избирательно ухудшать или блокировать усвоение нутриентов. Этот термин распространяется только на вещества природного происхождения, являющиеся составными частями натуральных продуктов питания. Представители этой группы веществ рассматриваются как своеобразные антагонисты обычных пищевых веществ. В указанную группу входят антиферменты, антивитамины, деминирализующие вещества, другие соединения.

Антиферменты (ингибиторы протеиназ). Вещества белковой природы, блокирующие активность ферментов. Содержатся в сырых бобовых, яичном белке, пшенице, ячмене, других продуктах растительного и животного происхождения, не подвергшихся тепловой обработке. Изучено воздействие антиферментов на пищеварительные ферменты, в частности пепсин, трипсин, амилазу. Исключение составляет трипсин человека, который находится в катионной форме и поэтому не чувствителен к антипротеазе бобовых.

В настоящее время изучено несколько десятков природных ингибиторов протеиназ, их первичная структура и механизм действия. Трипсиновые ингибиторы, в зависимости от природы содержащейся в них диаминомонокарбоновой кислоты, подразделяются на два типа: аргининовый и лизиновый. К аргининовому типу относят: соевый ингибитор Кунитца, ингибиторы пшеницы, кукурузы, ржи, ячменя, картофеля, овомукоид куриного яйца и др., к лизиновому — соевый ингибитор Баумана—Бирка, овомукоиды яиц индейки, пингвинов, утки, а также ингибиторы, выделенные из молозива коровы.

Механизм действия этих антиалиментарных веществ заключается в образовании стойких энзимингибиторных комплексов и подавлении активности главных протеолитических ферментов поджелудочной железы: трипсина, химотрипсина и эластазы. Результатом такой блокады является снижение усвоения белковых веществ рациона.

Рассматриваемые ингибиторы растительного происхождения характеризуются относительно высокой термической устойчивостью, что нехарактерно для белковых веществ. Нагревание сухих растительных продуктов, содержащих указанные ингибиторы, до 130° С или получасовое кипячение не приводят к существенному снижению их ин-гибирующих свойств. Полное разрушение соевого ингибитора трипсина достигается 20-минутным автоклавированием при 115° С или кипячением соевых бобов в течение 2—3 ч.

Ингибиторы животного происхождения более чувствительны к тепловому воздействию. Вместе с тем потребление сырых яиц в большом количестве может оказать отрицательное влияние на усвоение белковой части рациона.

Отдельные ингибиторы ферментов могут играть в организме специфическую роль при определенных условиях и отдельных стадиях развития организма, что в целом определяет пути их исследования. Тепловая обработка продовольственного сырья приводит к денатурации белковой молекулы антифермента, т. е. он влияет на пищеварение только при потреблении сырой пищи.

Вещества, блокирующие усвоение или обмен аминокислот. Это влияние на аминокислоты, в основном лизин, со стороны редуцирующих Сахаров. Взаимодействие протекает в условиях жесткого нагревания по реакции Майяра, поэтому щадящая тепловая обработка и оптимальное содержание в рационе источников редуцирующих Сахаров обеспечивают хорошее усвоение незаменимых аминокислот.

Антивитамины. Согласно современным представлениям, к антивитаминам относят две группы соединений:

— соединения, по механизму действия подобные антиметаболитам. Этот механизм направлен на конкурентные взаимоотношения между витаминами и антивитаминами;

— соединения, способные модифицировать витамины, уменьшать их биологическую активность и приводить к их разрушению.

Таким образом, антивитамины — это соединения различной природы, обладающие способностью уменьшать или полностью ликвидировать специфический эффект витаминов, независимо от механизма действия этих витаминов. Следовательно, к антивитаминам не относятся вещества, увеличивающие или уменьшающие потребность организма в витаминах (например, углеводы по отношению к тиамину).

Избыточное потребление продуктов, богатых лейцином, нарушает обмен триптофана, в результате блокируется образование из триптофана ниацина — одного из важнейших водорастворимых витаминов (витамин РР).

Наряду с лейцином антивитамином ниацина являются индолилук-сусная кислота и ацетилпиридин, содержащиеся в кукурузе. Чрезмерное потребление продуктов, содержащих вышеуказанные соединения, может усиливать развитие пеллагры, обусловленной дефицитом ниацина.

В отношении аскорбиновой кислоты (витамина С) антивитаминными факторами являются окислительные ферменты — аскорбатоксидаза, полифенолксидазы и др. Особо сильное влияние оказывает фермент — аскорбатоксидаза — содержащийся в овощах, фруктах и ягодах. Он катализирует реакцию окисления аскорбиновой кислоты до дегидроаскорбиновой. В организме человека дегидроаскорбиновая кислота способна проявлять в полной мере биологическую активность витамина С, восстанавливаясь под воздействием глутатионредукта-зы. Вне организма она характеризуется высокой степенью термолабильности — полностью разрушается при 10-минутном нагревании до 60° С в нейтральной среде, в щелочной среде при комнатной температуре. Поэтому учет активности аскорбатоксидазы имеет важное значение при решении ряда технологических вопросов, связанных с сохранением витаминов в пище.

Содержание и активность аскорбатоксидазы в различных продуктах питания не одинаковы. Наибольшее ее количество обнаружено в огурцах и кабачках, наименьшее — в моркови, свекле, помидорах, черной смородине и т. д. Разложение аскорбиновой кислоты под воздействием аскорбатоксидазы и хлорофилла происходит наиболее активно при измельчении растительного сырья, когда нарушается целостность клетки и возникают благоприятные условия для взаимодействия фермента и субстрата. Смесь сырых размельченных овощей за 6 ч хранения теряет более половины аскорбиновой кислоты. После приготовления тыквенного сока 15 мин. достаточно для окисления половины аскорбиновой кислоты, 35 мин. — в соке капусты, 45 мин. — в соке кресс-салата и т. д. Поэтому рекомендуют пить соки непосредственно после их изготовления или потреблять овощи, фрукты и ягоды в натуральном виде, избегая их измельчения и приготовления различных салатов.

Активность аскорбатоксидазы подавляется под влиянием флавоноидов, 1—3 минутном прогревании сырья при 100° С, что необходимо учитывать в технологии и приготовлении пищевых продуктов и кулинарных изделий.

Для тиамина (витамина В,) антивитаминными факторами является тиаминаза, содержащаяся в сырой рыбе, вещества с Р-витаминным действием — ортодифенолы, биофлавоноиды, основными источниками которых служат кофе и чай. Разрушающее действие на витамин В, оказывает окситиамин, образующийся при длительном кипячении кислых ягод и фруктов.

Тиаминаза, в отличие от аскорбатоксидазы, „работает" внутри организма человека, создавая при определенных условиях дефицит тиамина. Наибольшее количество тиаминазы обнаружено у пресноводных, в частности, у семейства карповых рыб, сельдевых, корюшковых. У трески, наваги, бычков и ряда других морских рыб этот фермент полностью отсутствует. Потребление в пищу сырой рыбы и привычка жевать бетель у некоторых народностей (например, жителей Таиланда) приводят к развитию недостаточности витамина В,.

Возникновение дефицита тиамина у людей может быть обусловлено наличием в кишечном тракте бактерий (Вас. thiaminolytic, Вас. ancknnolyticny), продуцирующих тиаминазу. Тиаминазную болезнь в этом случае рассматривают как одну из форм дисбактериоза.

Тиаминазы могут содержаться в продуктах растительного и животного происхождения, обусловливая расщепление части тиамина в пищевых продуктах в процессе их изготовления и хранения.

Для пиридоксина (витамин Вй) антагонистом является линатин, содержащийся в семени льна. Ингибиторы пиридоксалевых ферментов обнаружены в ряде других продуктов — съедобных грибах, в некоторых видах семян бобовых и т. д.

Избыточное потребление сырых яиц приводит к дефициту биотина, так как в яичном белке содержится фракция протеина — авидин, связывающий витамин в неусвояемое соединение. Тепловая обработка яиц приводит к денатурации белка и лишает его антивитаминных свойств.

Сохраняемость ретинола (витамина Л) снижается под воздействием перегретых или гидрогонизированных жиров. Эти данные свидетельствуют о необходимости щадящей тепловой обработки жироемких продуктов, содержащих ретинол.

Недостаточность токоферолов (витамин Е) образуется под влиянием неизученных компонентов фасоли и сои при тепловой обработке, при повышенном потреблении полиненасыщенных жирных кислот, хотя последний фактор можно рассматривать с позиций веществ, повышающих потребность организма в витаминах.

Факторы, снижающие усвоение минеральных веществ. К ним относят щавелевую кислоту и ее соли (оксалаты), фитин (инозитол-гсксафосфорная кислота), танины, некоторые балластные вещества, содержащие соединения крестоцветных культур и т. д.

Наиболее изучена в этом плане щавелевая кислота. Продукты с высокой концентрацией щавелевой кислоты способны резко снижать утилизацию кальция путем образования нерастворимых в воде солей. Такое взаимодействие может служить причиной тяжелых отравлений за счет абсорбции кальция в тонком кишечнике.

Смертельная доза для собаки составляет 1 г щавелевой кислоты на 1 кг массы! Содержание се в корме кур на уровне 2 % может привести к их гибели. Смертельная доза щавелевой кислоты для взрослых людей колеблется в пределах 5—150 г и зависит от ряда факторов. Установлено, что интоксикация щавелевой кислотой проявляется в большей степени на фоне дефицита витамина D. Известны случаи


8-09-2015, 22:52


Страницы: 1 2 3
Разделы сайта