Нанотехнологии в медицине

классической. Использование квантовомеханических эффектов вместо борьбы с ними может обеспечить молекулярные наноустройства возможностями, нереализуемыми в классических механизмах. Примером такого рода возможностей является реализация квантовых вычислений которая, если она будет достигнута, позволит решать задачи, не разрешимые за разумное время или, даже, в принципе неразрешимые на классических компьютерах.

Можно сказать, что молекулярная нанотехнология - одно из наиболее спорных, но и едва ли не наиболее многообещающее направление в современной науке. Вопрос о реализуемости ее идей будет, вероятно, решен в течение ближайших десятилетий, а возможно, и раньше.

Рассмотрим некоторые наноустройства медицинского назначения, которые могут быть изготовлены с использованием молекулярных нанотехнологий:

Респироциты

Респироцит представляет полую сферу, внутри которой находится сжатый кислород. Расчеты показывают, что сфера диаметром около 1 мк. с запасом по прочности способна выдержать давление кислорода более 1000 атм. Для сравнения, равновесное давление кислорода в гемоглобине крови составляет всего 0.5 атм., из которых доступно для выделения в ткани лишь 0.13 атм.

В простейшем случае суспензия респироцитов может быть инъецирована в кровеносную систему организма при нарушении нормального снабжения тканей кислородом. Расчеты показывают, что полная потребность организма в кислороде может быть обеспечена при вливании всего 0.5 мл взвеси респироцитов в минуту.

Более совершенный вариант респироцита может быть снабжен молекулярными насосами, способными запасать кислород в условиях его избытка и выделять его в условиях недостатка. Такие же респироциты могут переносить из тканей углекислый газ; либо один и тот же респироцит может попеременно заполняться то кислородом, то углекислым газом.

Клоттоциты

Клоттоциты представляют собой искусственный аналог тромбоцитов. По конструкции они напоминают респироцит, но внутри у него в свернутом состоянии находится волокнистая масса. При нарушении целостности тканей попавшие в зону ранения клоттоциты выбрасывают свое содержимое наружу. Волокна разворачиваются наподобие сети. Красные кровяные тельца попадают в эту сеть и кровотечение останавливается. Расчеты показывают, что при ране длиной 1 см и глубиной 3 мм кровопотеря составит ~ 6 мм3 , что составляет всего 1/10 одной кровяной капли.

Нанороботы

Более сложные устройства могут выполнять такие функции, как всеобъемлющая диагностика, "охота" за возбудителями инфекций и раковыми клетками, разрушение атеросклеротических отложений на стенках сосудов, восстановление поврежденных или постаревших тканей и отдельных клеток. Рассмотрим более подробно некоторые проблемы, которые могут встать при конструировании реальных нанороботов и наметим подходы к их решению:

- Энергетика нанороботов. Наноустройства могут использовать для своей работы химическую энергию, запасенную в растворенных в крови глюкозе и кислороде. Также возможна передача энергии от внешнего источника в виде электромагнитного или акустического излучения. Внутри устройства энергия может накапливаться в химической либо в механической форме.

- Управление наноустройством. В качестве систем управления для нанороботов могут быть использованы устройства наноэлектроники такие, как транзисторы на основе отдельных молекул или нанотрубок, возможность изготовления которых сейчас уже успешно продемонстрирована. Но еще большей степени миниатюризации можно достичь, используя чисто механические компоненты.

Молекулярная нанотехнология может также позволить достичь огромной плотности записи информации. Дрекслер предлагает использовать в качестве ее носителя линейные молекулы частично фторированного полиэтилена - цепочку атомов углерода, с которыми соединены два атома углерода, два атома водорода или по одному атому того и другого. Каждое звено такой цепочки несет чуть больше полутора бит информации (в случае использования только двух типов звеньев - -CH2 - и - СHF - ровно один бит), а полная плотность записи достигнет фантастического значения в ~15 бит/нм3 , т.е., ~15Ч1021 бит/см3 .

- Связь между нанороботами. В живой природе внутри организма используются в основном химические переносчики информации - цитокины, гормоны, нейропептиды, феромоны. Наноустройства, однако, смогут использовать и более быстрые каналы передачи информации, например, ультразвук, электромагнитное излучение.

- Диагностика. Для диагностики наноустройства могут использовать довольно большое количество разнооб-разных методов:

· измерение макроскопических параметров среды (температуры, давления, вязкости).

· измерение химических параметров (Ph, концентрации кислорода, углекислого газа, наличия антигенов, полинуклеотидов, гормонов, нейротрансмиттеров).

· атомно-силовое сканирование поверхности клетки.

· оптическая микроскопия ближнего поля

· акустическая микроскопия (по принципу эхолокатора; акустического томографа).

· магнито-резонансная томография.

· электромониторинг активности нейронов, мышечных клеток и др.

· химический мониторинг синапсов.

Можно предположить, что в будущем будут придуманы и другие, еще более эффективные методы диагностики.

По прогнозам исследовательской корпорации Форрестер [21], в период с 2005 по 2010 г. основное развитие нанотехнологии будет определяться медицинскими предложениями. В этот период медицинские товары приблизят нанотехнологии к рядовому потребителю.

Потребители нуждаются в совершенствовании диагностики. Работодатели и страховые компании озабочены состоянием здоровья сотрудников, поэтому последние, в свою очередь, нуждаются в более совершенной диагностике и терапии - не только тех болезней, которые у них уже есть, но и тех, к которым они предрасположены.

Наносенсоры станут звеном перехода к индивидуализированной медицине. Используя свои нанотехнологические средства - GeneEngine - компания Дженомикс из США уже обнаружила вариации генов на цепочках ДНК, это 200000 основных пар в длину. Компания прогнозирует возможность расшифровки всего генома человека, состоящего из 3 млн. пар. При этом будут использоваться возможности индивидуализированной терапии с применением нанотехнологической доставки лекарств (компании БиоСанте Фармасьютиклз или С Сиксти).

Создание новых линий производства приведет к снижению цен. Сегодня такие компании как Роше Дайагностикс используют технологию цепной реакции полимеразы для диагностики и выявления таких заболеваний как ВИЧ и гепатит. Система диагностики, созданная из нанокристаллов, подобных квантовым точкам, обещает большую точность и снижение стоимости путем использования методов производства, разработанных для полупроводниковой промышленности [2].

Приложения современных нанотехнологии в медицине

Сегодня мы еще довольно далеки от описанного Фейнманом микроробота, способного через кровеносную систему проникнуть внутрь сердца и произвести там операцию на клапане. Современные приложения нанотехнологий в медицине можно разделить на несколько групп:

Наноструктурированные материалы, в т. ч., поверхности с нанорельефом, мембраны с наноотверстиями;

Наночастицы (в т. ч., фуллерены и дендримеры);

Микро - и нанокапсулы;

Нанотехнологические сенсоры и анализаторы;

Медицинские применения сканирующих зондовых микроскопов;

Наноинструменты и наноманипуляторы;

Микро - и наноустройства различной степени автономности.

Рассмотрим эти группы приложений подробнее.

Наноматериалы.

Наноматериалы - это материалы, структурированные на уровне молекулярных размеров или близком к ним. Структура может быть более или менее регулярной или случайной. Поверхности со случайной наноструктурой могут быть получены обработкой пучками частиц, плазменным травлением и некоторыми другими методами.

Что касается регулярных структур, то небольшие участки поверхности могут быть структурированы "извне" - например, с помощью зондового сканирующего микроскопа (см. ниже). Однако, достаточно большие (~1 мк2 и больше) участки, а также объёмы вещества могут быть структурированы, видимо, только способом самосборки молекул.

Самосборка широко распространена в живой природе. Структура всех тканей определяется их самосборкой из клеток; структура клеточных мембран и органоидов определяется самосборкой из отдельных молекул.

Самосборка молекулярных компонентов разрабатывается как способ построения периодических структур для изготовления наноэлектронных схем, и здесь были достигнуты заметные успехи.

В медицине материалы с наноструктурированной поверхностью могут использоваться для замены тех или иных тканей. Клетки организма опознают такие материалы как "свои" и прикрепляются к их поверхности.

В настоящее время достигнуты успехи в изготовлении наноматериала, имитирующего естественную костную ткань. Так, учёные из Северо-западного университета (США) Jeffrey D. Hartgerink, Samuel I. Stupp и другие использовали трехмерную самосборку волокон около 8 нм диаметром, имитирующих естественные волокна коллагена, с последующей минерализацией и образованием нанокристаллов гидроксиапатита, ориентированных вдоль волокон. К полученному материалу хорошо прикреплялись собственные костные клетки, что позволяет использовать его как "клей" или "шпатлёвку" для костной ткани.

Представляет интерес и разработка материалов которые обладают противоположным свойством: не позволяют клеткам прикрепляться к поверхности. Одним из возможных применений таких материалов могло бы стать изготовление биореакторов для выращивания стволовых клеток. Дело в том, что, прикрепившись к поверхности, стволовая клетка стремится дифференцироваться, образуя те или иные специализированные клетки. Использование материалов с наноразмерной структурой поверхности для управления процессами пролиферации и дифференциации стволовых клеток представляет собой огромное поле для исследований.

Мембраны с нанопорами могут быть использованы в микрокапсулах для доставки лекарственных средств (см. дальше) и для других целей. Так, они могут применяться для фильтрации жидкостей организма от вредных веществ и вирусов. Мембраны могут защищать нанодатчики и другие вживляемые устройства от альбумина и подобных обволакивающих веществ.

Наночастицы Американская компания C-Sixty Inc. Проводит предклинические испытания средств на основе фуллереновых наносфер С60 с упорядоченно расположенными на их поверхности химическими группами. Эти группы могут быть подобраны таким образом, чтобы связываться с заранее выбранными биологическими мишенями. Спектр возможных применений чрезвычайно широк. Он включает борьбу с вирусными заболеваниями такими, как грипп и ВИЧ, онкологическими и нейродегенеративными заболеваниями, остеопорозом, заболеваниями сосудов. Например, наносфера может содержать внутри атом радиоактивного элемента, а на поверхности - группы, позволяющие ей прикрепиться к раковой клетке.

Подобные разработки проводятся и в России. В Институте экспериментальной медицины (Санкт-Петербург) использовали аддукт фуллерена с поливинилпирролидоном (ПВП). Это соединение хорошо растворимо в воде, а полости в его структуре близки по размерам молекулам С60. Полости легко заполняются молекулами фуллерена, и в результате образуется водорастворимый аддукт с высокой антивирусной активностью. Поскольку сам ПВП не обладает антивирусным действием, вся активность приписывается содержащимся в аддукте молекулам С60.

В пересчете на фуллерен его эффективная доза составляет примерно 5 мкг/мл, что значительно ниже соответствующего показателя для ремантадина (25 мкг/мл), традиционно используемого в борьбе с вирусом гриппа. В отличие от ремантадина, который наиболее эффективен в ранний период заражения, аддукт С60/ПВП обладает устойчивым действием в течение всего цикла размножения вируса. Другая отличительная особенность сконструированного препарата - его эффективность против вируса гриппа А - и В-типа, в то время как ремантадин действует только на первый тип.

Наносферы могут использоваться и в диагностике, например, как рентгеноконтрастное вещество, прикрепляющееся к поверхности определенных клеток и показывающее их расположение в организме.

Особый интерес вызывают дендримеры. Они представляют собой новый тип полимеров, имеющих не привычное линейное, а ветвящееся строение.

Собственно говоря, первое соединение с такой структурой было получено еще в 50-е годы, а основные методы их синтеза разработаны в основном в 80-е годы. Термин "дендримеры" появился раньше, чем "нанотехнология", и первое время они между собой не ассоциировались. Однако последнее время дендримеры все чаще упоминаются именно в контексте их нанотехнологических (и наномедицинских) применений.

Это связано с целым рядом особых свойств, которыми обладают дендримерные соединения. Среди них:

Предсказуемые, контролируемые и воспроизводимые с большой точностью размеры макромолекул;

Наличие в макромолекулах каналов и пор, имеющих хорошо воспроизводимые формы и размеры;

Способность к высокоизбирательной инкапсуляции и иммобилизации низкомолекулярных веществ с образованием супрамолекулярных конструкций "гость-хозяин".

Микро - и нанокапсулы Для доставки лекарственных средств в нужное место организма могут быть использованы миниатюрные (~1 мк) капсулы с нанопорами. Уже испытываются подобные микрокапсулы для доставки и физиологически регулируемого выделения инсулина при диабете 1-го типа. Использование пор с размером порядка 6 нм позволяет защитить содержимое капсулы от воздействия иммунной системы организма. Это дает возможность помещать в капсулы инсулин-продуцирующие клетки животного, которые иначе были бы отторгнуты организмом.

Микроскопические капсулы сравнительно простой конструкции могут взять на себя также дублирование и расширение естественных возможностей организма. Примером такой концепции может послужить предложенный Р. Фрейтасом респироцит - искусственный носитель кислорода и двуокиси углерода, значительно превосходящий по своим возможностям как эритроциты крови, так и существующие кровезаменители (например, на основе эмульсий фтороуглеродов). Более подробно возможная конструкция респироцита была рассмотрена выше.

Нанотехнологические сенсоры и анализаторы

Использование микро - и нанотехнологий позволяет многократно повысить возможности по обнаружению и анализу сверхмалых количеств различных веществ. Одним из вариантов такого рода устройства является "лаборатория на чипе. Это пластинка, на поверхности которой упорядоченно размещены рецепторы к нужным веществам, например, антитела. Прикрепление молекулы вещества к рецептору выявляется электрическим путем или по флюоресценции. На одной пластинке могут быть размещены датчики для многих тысяч веществ.

Такое устройство, способное обнаруживать буквально отдельные молекулы может быть использовано при определении последовательности оснований ДНК или аминокислот (для целей идентификации, выявления генетических или онкологических заболеваний), обнаружения возбудителей инфекционных заболеваний, токсических веществ.

Устройство размером в несколько миллиметров может быть помещено на поверхности кожи (для анализа веществ, выделяемых с потом) или внутри организма (в полость рта, желудочно-кишечный тракт, под кожу или в мышцу). При этом оно сможет сообщать о состоянии внутренней среды организма, сигнализировать о любых подозрительных изменениях.

В Институте молекулярной биологии им. Энгельгардта Российской академии наук разработана система, предназначенная для экспресс выявления штамма возбудителя; на одном чипе размещается около сотни флуоресцентных датчиков.

Интересную идею разрабатывают сразу несколько групп исследователей. Суть ее состоит в том, чтобы "пропустить" молекулу ДНК (или РНК) через нанопору в мембране. Размер поры должен быть таким, чтобы ДНК проходила в "распрямленном" виде, одно основание за другим. Измерение электрического градиента или квантового туннельного тока через пору позволило бы определить, какое основание проходит через нее сейчас. Основанный на таком принципе прибор позволил бы получить полную последовательность ДНК за один проход.

Медицинские применения сканирующих зондовых микроскопов Сканирующие микроскопы представляют собой группу уникальных по своим возможностям приборов. Они позволяют достигать увеличения достаточного, чтобы рассмотреть отдельные молекулы и атомы. При этом возможно изучать объекты, не разрушая их и, даже, что особенно важно с точки зрения медико-биологических применений, в некоторых случаях изучать живые объекты. Сканирующие микроскопы некоторых типов позволяют также манипулировать отдельными молекулами и атомами.

Хороший обзор возможностей сканирующих микроскопов при изучении биологических объектов содержится в книге. Уникальные возможности сканирующих микроскопов определяют перспективы их применения в медико-биологических исследованиях. Это в первую очередь изучение молекулярной структуры клеточных мембран.

Наноманипуляторы

Наноманипуляторами можно назвать устройства, предназначенные для манипуляций с нанообъектами - наночастицами, молекулами и отдельными атомами. Примером могут служить сканирующие зондовые микроскопы, которые позволяют перемещать любые объекты вплоть до атомов.

В настоящее время созданы прототипы нескольких вариантов "нанопинцета". В одном случае использовались две углеродные нанотрубки диаметром 50 нм, расположенные параллельно на сторонах стеклянного волокна диаметром около 2 мкм. При подаче на них напряжения нанотрубки могли расходиться и сходиться наподобие половинок пинцета.

В другом случае использовались молекулы ДНК, меняющие свою геометрию при конформационном переходе, или разрыве связей между нуклеотидными основаниями на параллельных ветвях молекулы.

Однако манипулятор для нанообъектов может и отличаться своим устройством от макроинструментов. Так, была продемонстрирована возможность перемещать нанообъекты с помощью луча лазера. В недавней работе ученых Корнельского и Массачусетского университетов им удалось "размотать" молекулу ДНК с нуклеосомы. При этом они тянули ее за конец с помощью такого "лазерного пинцета".

Микро - и наноустройства В настоящее время все большее распространение получают миниатюрные устройства, которые могут быть помещены внутрь организма для диагностических, а возможно, и лечебных целей.

Современное устройство, предназначенное для исследования желудочно-кишечного тракта, имеет размер несколько миллиметров, несет на борту миниатюрную видеокамеру и систему освещения. Полученные кадры передаются наружу.

Устройства такого рода было бы неправильно относить к области наномедицины. Однако, открываются широкие перспективы их дальнейшей миниатюризации и интеграции с наносенсорами описанных выше типов, бортовыми системами управления и связи на основе молекулярной электроники и других нанотехнологий, источниками энергии, утилизирующими вещества, содержащиеся во внутренних средах организма. В дальнейшем такие устройства могут быть снабжены приспособлениями для автономной локомоции и даже манипуляторами того или иного рода. В этом случае они окажутся способны проникать в нужную точку организма, собирать там локальную диагностическую информацию, доставлять лекарственные средства и, в еще более отдаленной перспективе, осуществлять "нанохирургические операции" - разрушение атеросклеротических бляшек, уничтожение клеток с признаками злокачественного перерождения, восстановление поврежденных нервных волокон и т.д. [1].

Современные перспективы наноустройств в медицине

Самособирающиеся контейнеры для доставки лекарств и клеточной терапии.

Исследователи из медицинского центра Джона Хопкинса разработали самособирающиеся контейнеры кубической формы, по размерам не превышающие пылинку. Такие контейнеры могут служить для доставки лекарств в организме человека. Они являются относительно недорогими, и могут производиться в массовом порядке в процессе, объединяющем технологию изготовления чипов с простой химией. Кроме того, благодаря своей металлической структуре, положение контейнеров внутри тела может отслеживаться с помощью магнитного резонанса.

Методика создания таких контейнеров, а также результаты успешных лабораторных испытаний были опубликованы в декабрьском выпуске журнала Biomedical Microdevices. В экспериментах контейнеры удерживали и отпускали микрокапли веществ и живые клетки, то есть то, что широко используется в медицинском лечении.

Новый процесс создания трехмерных контейнеров для захвата отдельных клеток и доставки медикаментов это принципиальное новое устройство, которое приведет к поколению 'умных таблеток'.

Микроконтейнеры, разработанные в лаборатории, в будущем будут содержать и электронные компоненты. Это позволит им действовать в качестве биосенсоров в теле человека или же высвобождать лекарства в ответ на поступивший извне радиосигнал.

Чтобы создать контейнеры, лучше всего начать с методик, применяемых в микроэлектронике: осаждение тонких пленок, фотолитография и электроосаждение

Затем исследователи поместили на края квадратов 'крючки' из металлического припоя для того, чтобы скрепить их. При быстром нагревании припой плавился, и его поверхностное натяжение стягивало соседние квадраты вместе, тем самым, образуя куб. После охлаждения припой застывал, и форма куба сохранялась. Чтобы быть уверенными в том, что наша заготовка действительно свернулась в куб, мы должны располагать 'крючки' очень точно. Но зато такая самоорганизующаяся


8-09-2015, 23:32


Страницы: 1 2 3
Разделы сайта