Соответствующее увеличение содержания элаетиновых элементов нат блюдается и в наружной оболочке. Таким образом, наиболее крупные из числа средних артерий (например, общие сонные) постепенно приобретают структуру, напоминающую строение аорты. Эти крупные сосуды построены по эластическому типу, и в их стенке эластиновые элементы преобладают над всеми остальными.
В качестве примера эластической артерии мы рассмотрим структуру аорты (рис. 358). Внутренняя оболочка (tunica intima) (9) этой последней представляет большой интерес в том отношении, что она имеет сравнительно сложное строение, а также и потому, что многие патологические процессы начинаются именно в ней. Сложно устроенной в интиме аорты является соединительнотканная прослойка между эндотелием, состоящим из сильно вытянутых по оси сосуда клеток, и внутренней эластической оболочкой. Здесь удается различить следующие слои. Непосредственно под эндотелием лежит нерезко от него отграниченный подэндотелиальный слой (3). Последний состоит из тонкой фибриллярной ткани, которая содержит многочисленные клетки вытянутой или звездчатой формы (слой Лангганса). За слоем Лангганса идет участок, соответствующий внутренней эластической оболочке. Однако в эластических артериях эта оболочка представлена не сплошной мембраной, как в артериях мышечного типа, а густой сетью более тонких эластиновых волокон, в которой обычно удается различить внутренний циркулярный и наружный продольный слой. Благодаря такому строению внутренней эластической оболочки в аорте трудно точно установить границу между внутренней и средней оболочкой. В соединительнотканных частях интимы аорты встречаются и продольно расположенные гладкие мышечные волокна.
Так же как и в артериях среднего калибра, толщина интимы с возрастом увеличивается, достигая у стариков 1 мм.
Клетки ланггансова слоя и вообще вся внутренняя оболочка в аорте (а также вообще в артериях) играют весьма большую роль. Не исключена прежде всего возможность прямого превращения ланггансовых клеток в эндотелий; кроме того, несомненно участие внутренней оболочки во всех регенеративных процессах. При разрывах стенок артерий новообразование ткани идет из интимы, при сращивании сосудов друг с другом рубец образуется за счет интимы, в клетках интимы впервые появляются отложения липоидов в начале артериосклероза и т.д. Все это говорит за то, что клетки Лангганса, подстилающие эндотелий, обладают теми же свойствами, что и камбиальные подэндотелиальные клетки средних и малых артерий.
Средняя оболочка состоит из циркулярных мышечных волокон и большого количества эластиновых волокон и эластиновых окончатых мембран (рис. 358, 2, б), которых здесь так много,что они в значительной степени маскируют мышечные клетки. Почти все эластиновые мембраны имеют окончатое строение и расположены в средней оболочке аорты концентрическими слоями в числе 40—50. Более, тонкими пластинками они связаны друг с другом и с внутренней эластической перепонкой.
Исследования последих лет показали, что в основном веществе между эластиновыми пластинками в средней части описываемого слоя всегда имеются соли извести.
В стенках сосудов эластического и мышечного типа (артериях и венах), а особенно в аорте недавно обнаружено еще особое вещество, наибольшее количество которого располагается обычно и в продольном слое внутренней эластической оболочки, и в других частях интимы, а также и во внутренних слоях средней оболочки. Это вещество имеет мукоидный характер и красится метахроматично теми же красками, что и слизь; оно пропитывает участки тонкой фибриллярной ткани, в которой лежат эластиновые сети внутренней оболочки (хромотропное вещество).
Наружная оболочка аорты построена из фиброзной ткани с большим содержанием толстых эластиновых волокон, которые, так же как и коллагеновые пучки, имеют преимущественно продольное направление. В наружной оболочке аорты всегда встречаются пучки продольных гладких мышц. Кроме того, в наружной оболочке аорты, как и вообще во всех более крупных сосудах, проходят сосуды (уаза Уазогит), питающие ее стенку и главным образом среднюю оболочку (рис. 358, В, 5).
Таким образом, по строению своей стенки все артерии могут быть подразделены на три группы: артерии эластического типа (аорта, легочная артерия), артерии смешанного типа (сонная, подключичная и т.д.) и артерии мышечного типа (все остальные).
Количество эластиновых элементов в стенке артерий убывает в полном соответствии с уменьшением кровяного давления. В крупных сосудах эластиновые элементы придают стенке большую прочность, а кроме того, играют роль буфера, смягчающего, благодаря своей упругости, те резкие толчки, которыми сердце вгоняет кровь в сосудистое русло.
Вены
Средние вены . Строение вен среднего, или мышечного, типа, соответствующих типу рассмотренной в начале предыдущего раздела артерии, в общих чертах то же самое с той лишь разницей, что стенка вен оказывается всегда более тонкой, поскольку в ней гораздо меньше мышечных волокон (рис. 359).
В стенках вен мышечного типа (рис. 360 и 361) также можно различить три слоя: внутреннюю, среднюю и наружную оболочки. Внутренняя оболочка состоит из эндотелия, клетки которого имеют менее вытянутую форму, чем в артериях. Внутренняя эластиновая мембрана развита гораздо слабее, чем в соответствующей артерии, и почти не обособлена от лежащих кнаружи от нее эластиновых элементов средней и наружной оболочки. В венах эластиновая строма представляет такое же единое целое, как и в артериях. Кроме того, во внутренней оболочке обычно имеются продольные пучки мышечных волокон (рис. 360, 2). Подэндотелиальный камбиальный слой обнаружен также и в венах (рис. 354, В). Средняя оболочка развита слабо, и в ней преобладает коллагеновая ткань. Мышечные волокна, имеющие в общем циркулярное расположение, лежат отдельными пучками (рис. 360). Содержание эластиновых элементов также незначительно. Наибольшего развития в венах достигает наружная оболочка; однако и в ней преобладают продольно расположенные коллагеновые пучки, а не эластиновые волокна. Весьма часто в наружной оболочке (рис. 360, 3) вен встречаются значительные пучки продольных мышечных волокон.
Мелкие вены . Переход от вен к капиллярам совершается с горазда большей постепенностью, чем от артерий.
Раньше других исчезает здесь средняя оболочка: от нее остаются лишь отдельные циркулярные мышечные волокна, в свею очередь исчезающие еще задолго до перехода в капиллярную сеть, дольше сохраняется наружная оболочка, но и она до капилляров не доходит, так как самые мелкие (посткапиллярные) вены имеют еще строение капилляров и ничем, кроме своего диаметра, от них не отличаются.
Крупные вены . Что же касается изменения строения венозной стенки по мере приближения к главным венозным стволам, то здесь такой закономерности, как в артериях, совершенно не наблюдается.
Это вполне понятно, так как различные крупные вены находятся в разных гемодинамических условиях, в то время как для артерий эти условия более или менее одинаковы.
Как общее правило, можно отметить, что в венах верхней половины туловища и головы средняя оболочка развита гораздо слабее, а мышечных клеток вообще гораздо меньше, чем в венах нижней половины тела.
В некоторых венах мышечные волокна вообще отсутствуют; таковыми являются вены мозга, трабекулярные вены селезенки и вены костей. Зато в других венах эти волокна располагаются в три слоя (vv. iliaca, femoralis, poplitea, umbilicalis); в tunica intima содержится внутренний продольный, в tunica media — средний циркулярный, а в tunica adventitia наружный продольный мышечный слой.
Что же касается эластиновой ткани, то она в более крупных венах достигает значительного развития, причем ее элементы в средней оболочке имеют циркулярное, а в наружной продольное, направление.
Таким образом, по мере удаления от капилляров вены все более и более утрачивают свое типичное трехслойное строение, аналогичное строению соответствующих артерий.
Самые крупные венозные стволы - верхняя и нижняя полые вены — представляют особый интерес в том отношении, что, будучи стволами одинаковой мощности и вполне сходными по своему положению относительно сердца, они имеют стенку, устроенную различно. Это зависит от того, что по одной из этих вен кровь идет в направлении силы тяжести, по другой— в обратном направлении. Верхняя полая вена ни в средней, ни в наружной оболочке не содержит мышечных элементов, в то время как в нижней полой вене (рис.361) при почти полном отсутствии средней оболочки в наружной оболочке (А—А1) имеется слошной и довольно мощный слой продольных мышечных волокон. Вены, впадающие в сердце (полые и легочные), отличаются еще той интересной особенностью, что они в своих прилежащих к сердцу отрезках содержат в наружной оболочке поперечнополосатые мышечные волокна, являющиеся отпрысками миокарда предсердий. Кроме того, легочная вена отличается от всех других вен тем,что имеет очень хорошо развитый циркулярный мышечный слой, вследствие чего своим строением напоминает артерию.
У четвероногих животных с горизонтальным положением туловища такой разницы между верхней и нижней полыми венами не наблюдается.
В связи с тем, что кровяной ток идет в венах при низком давлении, близком к нулю, в силу vis a tergo (т.е. толчка сзади) в венах в качестве приспособления, облегчающего продвижение крови к сердцу, имеются клапаны. Эти последние наиболее развиты в венах нижней половины туловища.
Однако следует иметь в виду, что в полых венах — как в верхней, так и в нижней — клапанов нет.
Клапаны в венах имеют форму карманов и образованы внутренней оболочкой, причем поверхность клапана, обращенная в просвет, отличается своим строением от поверхности, обращенной к стенке. Первая покрыта эндотелием, клетки которого имеют форму, вытянутую по длине сосуда; под эндотелием здесь лежит эластиновая сеть. Клетки эндотелия, покрывающие вторую поверхность (внутреннюю), имеют неправильное циркулярное расположение.Обычно они обладают полигональной формой и лежат на волокнистой (коллагеновой) ткани.
Общая характеристика строения
Наряду с кровеносными сосудами у позвоночных и человека существует еще параллельная система лимфатических сосудов, выполняющих в тканях как бы дренажную роль.
Лимфатические сосуды начинаются на периферии, в тканях, тонкими слепыми трубками, напоминающими скорее щелевидные пространства. Соединяясь вместе, они образуют сеть лимфатических капилляров; укрупняясь, капилляры переходит в лимфатические сосуды, которые обычно идут вместе с венами, располагаясь, однако, в более глубоких частях органов. Лимфатические сосуды сливаются и в конце концов соединяются в два крупных лимфатических ствола: ductus thoracicus (грудной проток) и ductus bronchomediastinalis dexter (проток грудного средостения). Оба эти ствола открываются в большие вены, снабжая, таким образом, венозную кровь продуктами, оттекающими от тканей. Через ductus bronchomediastinalis кровь получает жидкое содержимое, называемое лимфой, из верхней правой половины тела. Этот проток обычно открывается в правую безыдейную вену. Через ductus thoracicus в кровь вливается лимфа из всех остальных частей тела, включая и пищеварительные органы. Ductus thoracicus открывается в вены в месте соединения левой внутренней вены с веной подключичной.
Лимфатическая система появляется впервые только у позвоночных и у млекопитающих достигает наибольшей сложности. У беспозвоночных лимфатической системы нет.
У позвоночных и человека лимфатические сосуды распространены преимущественно в коже, слизистых и серозных оболочках. Их нет в нервной системе; что же касается поперечнополосатых мышц, то распределение в них лимфатических сосудов остается еще в значительной степени спорным. Повидимому, последние действительно отсутствуют в мелких мышечных пучках и имеются только в более толстых соединительных прослойках.
Здесь зато сильно развиты так называемые периваскулярные лимфатические пространства.
Характерной особенностью лимфатической системы млекопитающих и человека является присутствие в ней лимфатических узлов, расположенных по ходу периферических лимфатических сосудов.
В организме имеются еще какие-то циркуляционные лимфатические пути, которые не организованы в форме сосудов или капилляров. В настоящее время нет еще достаточного количества гистологических данных, чтобы можно было обрисовать картину строения этих путей. Поэтому в дальнейшем мы и ограничимся описанием только лимфатических капилляров и лимфатических сосудов.
Однако раньше, чем перейти к описанию сосудов, необходимо сказать несколько слов о жидком содержимом сосудов или о лимфе (от латинского слова lympha). Очень старое латинское слово, означающее «чистая вода источника». В биологии лимфой обозначают содержимое лимфатических сосудов.
Химический и клеточный состав лимфы
Лимфа представляет собой жидкость, сходную по своему химическому составу с плазмой крови. Она состоит из воды, кровяных протеинов, экстрактивных веществ и неорганических солей. Из газообразных веществ в лимфе всегда содержится некоторое количество углекислоты и почти отсутствует кислород. Так же, как и плазма крови, лимфа свертывается, однако свертывание ее протекает гораздо медленнее.
Изучение лимфы, оттекающей из различных органов, показывает, что химический состав ее не столь постоянен, как химический состав крови. Это зависит от того, что тканевая жидкость в отдельных органах и тканях различна. Просачиваясь через тончайшие стенки конечных лимфатических капилляров, тканевая жидкость как раз и дает начало сосудистой лимфе.
Тканевую жидкость часто называют интерстицальной лимфой. Химический состав этой жидкости изучен плохо. Предполагается, что он в основном Очень близок к лимфе сосудистой.
Накапливаясь в лимфатических капиллярах, лимфа не содержит никаких форменных клеточных элементов, но они всегда могут быть обнаружены в сосудах, отходящих, от лимфатических узлов.
Форменные элементы лимфы представлены почти исключительно лимфоцитами и моноцитами. Количество лимфоцитов в лимфе человека в течение суток может подвергаться весьма значительным колебаниям, поэтому точными количественными данными мы не располагаем. Считается, что в норме у человека в лимфе около 8 000 лимфоцитов и моноцитов в 1 мм3.
При различных патологических состояниях в лимфе могут появляться и гранулоциты, но их число все же никогда не бывает значительным.
Лимфатические капилляры
Лимфатические капилляры обнаруживаются либо путем наливки, «инъекции», либо путем обработки азотнокислым серебром. Оба эти метода не отличаются большим совершенством, почему лимфатические капилляры изучены еще далеко не достаточно. Сети этих капилляров лежат обычно глубже, чем сети кровеносных капилляров. В различных органах они имеют различное и иногда (например, в слизистой оболочке тонкой кишки) весьма характерное расположение.
Благодаря хорошо развитой системе клапанов наинъицировать лимфатическую систему против тока лимфы чрезвычайно трудно. Лимфатические сосуды обычно инъицируются путем вкалывания иглы в ткань, где они находятся.
Лимфатические капилляры наиболее изучены в сухожильном центре диафрагмы, в серозных оболочках и т.д., т.е. в таких местах, где они лежат в более плотной соединительной ткани. Здесь они образуют неправильные сети (рис. 362), состоящие из сосудов неодинаковой толщины, от которых отходят многочисленные боковые слепые выступы.
Поперечник лимфатических капилляров гораздо значительнее, чем поперечник кровеносных,— он достигает 100µ и более. При этом надо иметь в виду, что просветы этих капилляров имеют не цилиндрическую форму, а являются плоскими щелями, выстланными эндотелием. Границы клеток последнего на препаратах, обработанных серебром, представляются извилистыми; следовательно, клетки эти имеют неправильную форму. В прежнее время, главным образом из чисто теоретических соображений, считали, что лимфатические капилляры стоят в прямом сообщении с тканевыми щелями; однако в новейшее время такая связь отрицается, так как факты ее не подтверждают. Сеть лимфатических капилляров является, по всей вероятности, слепо заканчивающейся системой, и полость ее отделена от окружающей ткани протоплазмой эндотелия, через которую и совершается обмен между тканевой жидкостью и содержимым капилляров. Этот обмен происходит, повидимому, благодаря активной деятельности эндотелия капилляров. В пользу такого представления говорит тот факт, что при введении в организм некоторых химических веществ деятельность капиллярного эндотелия значительно повышается. Капиллярную лимфатическую сеть можно сравнить с корневой системой растений, подобно которой лимфатические капилляры высасывают из соединительной ткани жидкость, попадающую туда из кровяной плазмы через стенки кровеносные капилляров. Таким образом, лимфатические капилляры помогают оттоку жидкости из тканей, который не всегда может быть осуществлен только по кровеносным капиллярам.
Лимфатические сосуды
Лимфатические сосуды можно подразделить на мелкие, средние и крупные. Самые мелкие лимфатические сосуды имеют меньший диаметр, чем лимфатические капилляры, так что их удается отличить уже по этому признаку. Кроме того, все лимфатические сосуды, начиная с самых мелких, снабжены богато развитой системой клапанов. На месте каждого клапана сосуд немного расширяется. Это придает лимфатическим сосудам весьма характерный вид (рис. 363). Эндотелий их состоит из более правильно контурированных клеток, вытянутых по длине сосуда и нанрминающих клетки эндотелия вен.
Вообще лимфатические сосуды по строению своей стенки сильно напоминают вены. Последнее, несомненно, стоит в связи с тем, что ток лимфы по сосудам совершается в условиях, подобных тем, в которых находится кровь в венах. И там, и здесь налицо низкое давление и vis a tergo . Только тэта сила, толкающая по сосудам лимфу, еще меньше, чем в венах, почему стенка лимфатических сосудов и является еще более приспособленной к проталкиванию жидкости, в ней находящейся, чем стенка вены. В лимфатических сосудах больше клапанов, а в стенках сильнее развита мускулатура и эластиновые элементы (рис. 364). Лимфатические сосуды со своими клапанами являются как бы насосом. При сокращении стенки находящаяся в них лимфа прогоняется по направлению к венам. То же самое происходит и при массировании сосудов. Обратный ток лимфы невозможен благодаря присутствию многочисленных карманных клапанов, имеющих приблизительно такое же строение, как и клапаны вен.
Одновременно в просачивании тканевой жидкости в лимфатические капилляры может иметь значение и кровяное давление, как допускают некоторые физиологи. Плазма крови
9-09-2015, 00:07