Применение радионуклидов в ядерной медицине

при употреблении наркотиков и алкоголя) в 1,5 – 2 раза по сравнению с применяемыми в настоящее время методами. Процент лиц, не употребляющих наркотики после прохождения полного курса ксеноновой терапии (включая реабилитацию) и находящихся под наблюдением в течение одного года, составил не менее 50% (на базе около 60 больных). Пациент становится практически здоровым человеком. Применение ксенона в комплексной терапии опийной наркомании позволяет успешно преодолевать негативные и болезненные проявления абстинентного синдрома, при этом:

· уменьшает проявления вегетативных нарушений;

· купирует болевой синдром;

· нормализует сон у больных, даже в варианте монотерапии или с минимальной фармакологической нагрузкой;

· в 1.5-2 раза уменьшает время снятия абстинентного синдрома, значительно уменьшает фармакологическую нагрузку.

Применение данного метода позволяет эффективно лечить не только абстинентный синдром, но и постабстинентное состояние при опийной наркомании, особенно у больных, имеющих нарушения функции печени и непереносимость специфических фармпрепаратов, используемых при терапии наркотической зависимости.

Широкое применение газ ксенон получил в анестезиологии.Ученые медики давно искали оптимальный вариант анестетика возможность проведения полноценного и безопасного наркоза. Первое сообщение в наркотических свойствах ксенона принадлежит наличие русскому ученому Н.В.Лазареву. В 1946 году он экспериментально подтвердил наличие у ксенона наркотических свойств.

10 ноября 2004 года, через 58 лет после сообщения Лазарева, в Томском НИИ онкологии прошла показательная операция для анестезиологов России. Ведущий анестезиолог страны Николай Буров и его томские коллеги продемонстрировали, как можно вместо обычного наркоза использовать газ ксенон. В операционной Томского НИИ онкологии необычно много врачей. Они приехали учиться в Томск из разных регионов России. На операционном столе – женщина. Хирурги-онкологи проводят удаление молочной железы. Операция, казалось бы, одна из немногих, только наркоз используется с применением ксенона. Именно академик Николай Буров стал основоположником ксенонового наркоза. Понадобилось 8 лет, чтобы газ попал в операционные.

Развитие ксеноновой анестезии долгое время сдерживали дефицит, дороговизна и отсутствие директивных фармакопейных документов. Но и признанный в начале ХIХ века общий наркоз из хлороформа или закиси азота с эфиром больные переносили плохо.Однако недавно немецкие ученые из Университета Ульма (University of Ulm) сумели создать устройство, позволяющее использовать газ повторно. Отработанная наркозная смесь закачивается под давлением в сосуд, где охлаждается до нуля градусов, объясняет Томас Арцт. При этом кислород и азот остаются в виде газов, а ксенон снижается, и его легко выделить из смеси и пустить в ход по второму кругу. Наши ученые изобрели другой способ повторного использования ксенона, но об этом Ксенон расскажет чуть позже.

Помимо безопасности для окружающей среды, медики отмечают, что ксенон в качестве наркозного средства почти не дает побочных эффектов (но только у взрослых), сокращает период нахождения больных в реанимации после тяжелых операций, в том числе операций на сердце. Кроме того, ксенон не вредит здоровью медперсонала так сильно, как другие газы, используемые для наркоза.

В настоящее время анестезиологи почти отказались от взрывоопасных и токсичных веществ, таких как эфир и циклопропан. Вместо них используются галогенизированные углеводороды, которые тем не менее оказывают негативное влияние на воздух в операционной, а, попадая в атмосферу, вызывают парниковый эффект и разрушают озоновый слой. Только в Германии во время хирургических операций в окружающую среду ежегодно выделяется 40 миллионов литров галогенизированных углеводородов.

Исполнилось 105 лет с момента открытия инертного газа ксенона (1898) и 50 лет его первого клинического применения в качестве средства для наркоза (1951). Ограниченные запасы ксенона (Хе) в мире и высокая стоимость газа являлись в прошлые годы главными причинами замедленного его распространения в клинической анестезиологии. Не менее важной задачей остается задача реального снижения стоимости медицинского ксенона, цена на который достигает ныне шести долларов. Даже при бережном расходе этого газа на двухчасовую анестезию потребуется 15-20 литров ксенона (75 - 120 долларов).

Однако, бурный рост промышленного производства и научно-технического процесса второй половины ХХ века привели к тому, что уже не дефицит и высокая стоимость ксенона стали сдерживать клиническое применение ксенона, а отсутствие нормативно-правовой базы для его широкого использования. Этот вопрос не решен пока во всех странах, за исключением России. Нами впервые в мире выполнен весь комплекс доклинических и клинических испытаний ксенона в соответствии с высокими требованиями Фармкомитета и приказом министра здравоохранения РФ от 8.10.1999 г № 363 инертный газ ксенон (Хе) разрешен к медицинскому применению в качестве средства для наркоза.

Таким образом, Россия стала первой страной мира, в которой успешно заложена нормативно-правовая основа для ксеноновой анестезии и созданы реальные условия для более широкого клинического применения этого великолепного анестетика. Увеличено годовое производство ксенона в стране и созданы запасы этого газа в достаточных объемах. Успешно налаживается производство наркозной и газоаналитической аппаратуры по ксеноновой анестезии, составлены и утверждены учебный план и программа тематического усовершенствования по технологии ксенон-сберегающей анестезии на базе кафедры анестезиологии и реаниматологии РМАПО. Издана первая в мире монография «Ксенон в анестезиологии».М.Пульс.2000. С применением ксенона в клинической практике открывается новая страница в истории отечественной анестезиологии.

У ксеноновой анестезии имеется потенциальный резерв снижения стоимости за счет применения способа рециклинга (газ, выдыхаемый из наркозного аппарата, утилизируется путем адсорбции специальным устройством (блок адсорбера), который после заполнения подвергается температурной десорбции, очищенный ксенон возвращается потребителю для повторного использования, что резко снижает стоимость и дефицит ксеноновой анестезии), чего нет у перечисленных анестетиков. Кроме того, окислы закиси азота и радикалы углерода при использовании галогеносодержащих жидких анестетиков, рассеиваются в окружающей среде и представляют экологическую опасность.

Ксенон может быть применен в качестве средства анестезии при различных хирургических операциях, болезненных манипуляциях, снятия болевого приступа и лечения болевых синдромов. Он применяется в масочном или и в эндотрахеальном варианте как в виде мононаркоза, так и в виде комбинированной анестезии в сочетании с различными внутривенными седативными средствами, наркотическими и ненаркотическими аналгетиками, нейроплегиками, транквилизаторами, ганглиолитиками и другими средствами. Практически ксенон может применяться в качестве анестетика в тех же ситуациях, что и закись азота: в общей хирургии, урологии, травматологии, ортопедии, неотложной хирургии, особенно у больных с сопутствующими заболеваниями сердечно-сосудистой системой, находящихся в группе высокого риска.

Незаменим ксенон при операция в нейрохирургии центральной и периферической нервной системы в особенности при использовании микрохирургической техники когда необходим словесный контакт с пациентом для дифференциации чувствительных и двигательных пучков при операциях на нервных стволах, в детской хирургии в масочном и эндотрахеальном вариантах, в акушерстве и оперативной гинекологии (оперативное родоразрешение, аборты, расширенные операции в гинекологии, диагностические исследования, обезболивание родов), при болезненных манипуляциях, перевязках, биопсиях, обработке ожоговой поверхности, с лечебной целью при снятии болевого приступа (при травматическом шоке, при стенокардии, инфаркте миокарда, почечной и печеночной колике), а также при моторной афазии, лечении дизартрии, снятия эмоционального стресса и других функциональных неврологических расстройств.

Ксенон может быть использован как в варианте мононаркоза при сохранении спонтанного дыхания, так и в сочетании с различными внутривенными средствами анестезии.

Противопоказаний к ксенону не установлено, однако, применение ксенона в качестве анестетика, возможно лишь при наличии сертифицированной аппаратуры и специалиста врача-анестезиолога-реаниматолога, прошедшего специальную подготовку по «технологии ксенон – сберегающей анестезии»


4. Инновации в сфере использования радиоактивных элементов в медицине

4.1 Понятие инновации

Инновация — нововведение в области техники, технологии, организации труда или управления, основанное на использовании достижений науки и передового опыта, обеспечивающее качественное повышение эффективности производственной системы или качества продукции.

Понятие инновация относится как к радикальным, так и постепенным (инкрементальным) изменениям в продуктах, процессах и стратегии организации (инновационная деятельность). Исходя из того, что целью нововведений является повышение эффективности, экономичности, качества, удовлетворенности клиентов организации, понятие инновационности можно отождествлять с понятием предприимчивости — бдительности к новым возможностям улучшения работы организации (коммерческой, государственной, благотворительной).

Всякое инновационное развитие – это не только основной инновационный процесс, но и развитие системы факторов и условий, необходимых для его осуществления. Переход России на инновационный путь развития важен и для научно-технической сферы, и для повышения конкурентоспособности отечественной экономики. При этом развитие инновационной сферы было провозглашено на государственном уровне в качестве важнейшей стратегической задачи.

Потребность в инновациях возникает под воздействием как внешних, так и внутренних факторов. К внешним относятся: конкурентная борьба, задачи завоевания новых рынков, изменение политической, демографической, правовой ситуации и пр.; к внутренним: неблагоприятные условия труда, рост производственных затрат.

4.2 Элемент с радиоактивным веществом и способ его производства

Настоящее изобретение относится к радиотерапии. Конкретнее, изобретение относится к радиоактивным источникам в брахитерапии и способам подготовки этих источников.Брахитерапию предложено использовать для лечения различных состояний, включая артриты и рак, например рак груди, мозга, печени, яичников и в особенности рак простаты у мужчин. Радиоактивный источник находится вблизи участка тела, подвергаемого лечению. Достоинством последнего является то, что высокая доза радиации достигает участка лечения, а окружающие и здоровые ткани при этом получают сравнительно малые дозы радиации.

Рис. 1.Элемент с радиоактивным веществом.

Представленное изобретение, как показано на рис.1. является элементом 10 с радиоактивным веществом для использования в брахитерапии. Элемент 10 с радиоактивным веществом включает удлиненный биоабсорбируемый носитель 12 с размещенными в нем через промежутки радиоактивными источниками 14. В одном варианте осуществления представленного изобретения элемент 10 с радиоактивным веществом образуется формованием. Далее, в представленном изобретении рассматривается, что носитель 12 является, в основном, сплошным.Как показано на рис.3.1. носитель 12 включает множество участков 18 размещения зерен и промежуточных участков 20. Носитель 12 может определять наличие одного или более отверстий 22, образованных в результате процесса формования в соответствии с представленным изобретением, в которых расположены маленькие стержни. Эти стержни находятся на любом из концов участков 18 размещения зерен, чтобы сохранять и регулировать положение радиоактивных источников 14 внутри носителя 12.Элементы с радиоактивным веществом в соответствии с данным изобретением могут быть использованы для лечения различных заболеваний, включая рак головы и шеи (включая рак полости рта, губ и языка), опухоли мозга, опухоли легких, опухоли шейки матки, вагинальные опухоли и рак простаты. Они могут использоваться как первичное лечение (например, при лечении рака простаты или неоперабельных опухолей) или для лечения остаточных явлений после удаления первичной опухоли. Они могут быть использованы совместно с другими методами лечения или при завершении других курсов лечения, например лучевой терапии, химиотерапии или гормонотерапии. [8]

4.3 Устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам

Изобретение относится к устройствам для разделения и глубокой очистки радиоактивных элементов, обладающих различной способностью к образованию амальгам, и может найти применение в радиохимической промышленности для выделения радиоактивных изотопов, используемых в медицине, в аналитической химии для выделения анализируемого элемента. Изобретение содержит полупротивоточное устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам, методом цементации одного из элементов, электролизную, разделительную и регенерационные ячейки, расположенные вертикально одна под другой, снабженные мешалками, расположенными на одном валу, емкость для сбора регенерированной ртути и транспортирующим шнеком, плотно посаженным в трубу и вращающимся вместе с трубой, а ртуть перемещается из ячейки в ячейку через гидрозатворы под действием силы тяжести. Техническим результатом заявленного изобретения является работа дистанционно управляемого устройства в условиях радиационно-защитных камер.

Рис.2.Устройство для разделения радиоактивных элементов

Устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам, представленное на чертеже, состоит из электролизной ячейки 1, разделительной ячейки 2, регенерационных ячеек 3, емкости для сбора ртути 4, транспортирующего шнека 5, привода шнека 6, мешалок 7, с электроприводом 8 и гидрозатворов 9.Образование амальгамы натрия происходит в электролизной ячейке под действием электрического тока. Анодом служит платиновое кольцо, расположенное в растворе натриевой щелочи, постоянно протекающей через ячейку, ртуть является катодом. Дозирование ртути в электролизную ячейку осуществляется транспортирующим шнеком, плотно посаженным в трубу и вращающимся вместе с трубой с помощью отдельного привода. При вращении шнека ртуть поднимается по винтовой канавке и поступает в электролизную ячейку. Концентрация образующейся амальгамы в ячейке регулируется скоростью вращения шнека и силой тока.

Амальгама натрия заданной концентрации из электролизной ячейки перетекает через гидрозатвор в разделительную ячейку, расположенную под электролизной. В разделительную ячейку заливают водный раствор разделяемых элементов такого состава, при котором амальгама натрия восстанавливает только один элемент, оставляя другой в ионном виде. Образовавшаяся в результате этого процесса амальгама поступает через гидрозатвор в регенерирующие ячейки, расположенные под разделительной ячейкой.

Из регенерационных ячеек очищенная ртуть поступает в сборник ртути и далее шнеком в электролизную ячейку. Таким образом, элемент, обладающий большей способностью к образованию амальгамы, выводится из системы с регенерирующим раствором в отдельную фракцию. Второй разделяемый элемент остается в неподвижной водной фазе в разделительной ячейке и по окончании процесса извлекается из нее. [9]

Заключение

Применение радиоактивных элементов оказывает огромное значение в достижениях современной медицины. Радиоактивные элементы нашли широкое применение как в диагностике, так и в лечении различных заболеваний.

В настоящее время с помощью радионуклидной диагностики можно исследовать практически любой орган или ткань организма, а некоторые из них несколькими способами. При четко поставленной задаче и непрерывно действующей обратной связи между врачом-радиологом и врачами клинических отделений, возможности радионуклидной диагностики практически безграничны, а помощь в постановке сложных диагнозов неоценима. В развитых странах удвоение числа радионуклидных обследований происходит каждые 3 – 5 лет.

В немалой мере этому способствует внедрение в медицинскую практику этих стран исследований РФП 99 m Tc, а также короткоживущих циклотронных радио нуклидов (67 Ga, 111 In, 113 I, 201 Tl)и ультракороткоживущих позитроноизлучающих радионуклидов (11 C,13 N, 15 O, 18 F).Число обследованных с помощью методов радионуклидной диагностики составило в расчете на 1000 человек населения в Канаде – 59, в США – 32, в Австрии – 18, в Японии и Швеции – 15, в Англии – 10, и в России – 7 [8]В США в 1990 году было проведено 10 млн. диагностических процедур с радионуклидами.

Количество процедур по изучению перфузии Миокарда с 201 Tl увеличилось с 700 000 в 1988 году до 1 000 000 в 1989 году и до 1 300 000 в 1990 году.В нашей стране до последнего времени РФП с 99 m Tc применялись только у 15% пациентов, тогда как меченные 131 I и 198 Au препараты, создающие значительные дозы облучения - у 80%. В коллективной дозе, вызванной применением радионуклидов в диагностике в нашей стране, препараты на основе 131 I обеспечивают 20 – 30% облучения почек и печени, 40 – 50% облучения всего тел. В настоящее время радиоактивные генераторы практически вытеснили другие радиоактивные изотопы из клинической практики.

Развитие химии радиофармпрепаратов идет по пути создания новых наборов для 99mTc. За прошедшие несколько лет в России прошли клинические испытания и допущены к применению препараты Российского производства: 99mTc-макротех – для исследования легочного кровотока, 99mTc-теоксим – для исследования перфузии головного мозга, 99mTc-технетрил – для исследования перфузии миокарда.

Практически завершены клинические испытания препарата 99mTc-глюкорат, который является маркером некроза и может быть использован для визуализации инфарктных зон сердца. Использование радиофармацевтики лицензировано администрацией США. Предусмотрены программы по обучению физиков, фармацевтов и радиохимиков, работающих в этой области. На данный момент в США существует около 5 000 центров ядерной медицины, производящих порядка 18 млн. процедур ежегодно. Примерно столько же процедур выполняется центрами ядерной медицины, существующими в других странах мира. Их количество непрестанно растет. Благодаря тесному сотрудничеству ученных разных стран мировая медицина добилась существенного прогресса в области применения радиоактивных элементов.

Список используемых источников

1. Куренков, Н.В. Радионуклиды в ядерной медицине [Текст] : справочное издание / Н.В. Куренков, Ю.Н. Шубин ; под общ ред. Н.В. Куренкова. – Обнинск.: ФЭИ, 1998. – 163с.

2. Звонов, И.А. Лучевые нагрузки от радиофармацевтики[Текст] / И.А. Звонов, - М.: Атоминформ, 1999. – 237с.

3. Трофимова, Т.И. Справочник по физике[Текст] : справочное издание / Т.И.Трофимов, - М.: Издательский дом «Дрофа», 2001. -208с.

4. Жданов, В.М. Тайны разделения изотопов[Текст] / В.М. Жданов. – М.: МИФИ, 2004. – 38с.

5. Чазова, Е.И. Неотложные состояния и экстренная медицинская помощь [Текст] : справочное издание / Е.И. Чазова. - М.: Медицина, 1997. – 78с.

6. Воробьёва, А.И. Справочник практического врача [Текст] : справочное издание / А.И.Воробьёв. – М.: Медицина, 2001. – 107с.

7. Яблоков, В.А. Миф о безопасности малых доз радиации [Текст] / В.А. Яблоков // Гражданская инициатива. – 2000. – №1. – С. «23–25.

8. Пат. 2277953 Российская Федерация, МПК A 61 N 5/10, A 61 M 36/00. Элемент с радиоактивным веществом и способ его производства [Текст] / Рэйпач Майкл, Хелл Кевин, Рид Джей. ; заявитель и патентообладатель МЕДИ-ФИЗИКС, ИНК. – 2003112010/14 ; заявл. 01.11.2001 ; опубл. 20.06.2006, Бюл. №17. – 20 с. : ил.

9. Пат. 2294314 Российская Федерация, МПК C 01 G 56/00, C 01 А 17/00. Устройство для разделения радиоактивных элементов, обладающих


8-09-2015, 20:04


Страницы: 1 2 3 4
Разделы сайта