Лазеры и их применение в медицине

сгорание сухого остатка. Глубина и степень дистрофических изменений тканей при воздействии различных видов лазерного излучения зависят как от их спектральных характеристик, так и от суммарной энергии (продолжительность воздействия) излучения. При небольших экспозициях деструкции подвергаются лишь поверхностные слои тканей. Последовательное увеличение времени воздействия излучения сопровождается увеличением объема поврежденных тканей вплоть до перфорации органа. Перемещение лазерного луча в продольном или поперечном направлении ведет к испарению тканей и формированию линейного разреза органа.

В зоне коагуляционного термического некроза происходит коагуляция стенок сосудов и крови с образованием коагуляционного гиалиноподобного тромба, закупоривающего просвет сосуда и обеспечивающего адекватный гемостаз. В условиях дозированной компрессии при использовании лазерных хирургических аппаратов гемостатический эффект лазерного излучения в значительной степени усиливается, так как

Схематическое изображение лазерной раны желудка

Сосуды с редуцированным кровообращением моментально коагулируются .

Морфология лазерной раны имеет характерные черты, резко отличающие ее от ран другого происхождения. Подвергшиеся термическому воздействию ткани представлены коагуляционным некрозом, формирующим лазерный термический струп. Последний плотно прикрывает поверхность раны. Непосредственно после лазерного воздействия трудно определить полный объем некротизированных тканей. Граница подвергшихся коагуляционному некрозу тканей стабилизируется в основном через сутки. В этот период в узкой зоне сохранившихся тканей на границе с термическим некрозом обнаруживают отек и различной степени выраженности расстройства кровообращения, проявляющиеся гиперемией, стазами, периваскулярными диапедезными кровоизлияниями.

На основе гистологических исследований выделены следующие зоны лазерного воздействия: зона коагуляционного некроза, периферическую часть которой составляет узкий рыхлый («спонгиозный») слой, а центральную — широкий, компактный, и зона воспалительного отека (рис.23).

Отмечены микроциркуляторные расстройства, наиболее выраженные при воздействии излучения АИГ-Nd-лазера и аргонового лазера (при гемостазе острых кровоточащих язв желудка). Процесс рассечения тканей углекислотным лазером сопровождается строго локальной коагуляцией последних по линии разреза, предотвращая тем самым повреждение окружающих тканей.

В лазерных ранах в отличие от ран другого происхождения слабо выражены или даже отсутствуют переходные зоны от коагулированных тканей к жизнеспособным. Регенерация в этих случаях начинается в основном в клетках зоны, не поврежденной лазерным излучением.

Известно, что повреждение тканей сопровождается выбросом медиаторов воспаления. Среди последних выделяют плазменные (циркулирующие) медиаторы, а также клеточные (локальные) медиаторы, связанные с деятельностью многих клеток — лаброцитов, тромбоцитов, макрофагов, лимфоцитов, полиморфно-ядерных лейкоцитов и др. В частности, роль полиморфно-ядерных лейкоцитов в раневом процессе заключается прежде всего в лизисе мертвых тканей и фагоцитозе микробов. Любое уменьшение степени микробного обсеменения ведет к уменьшению интенсивности всех компонентов воспаления. При бактериологическом исследовании материала с поверхности ран и 1 г ткани при иссечении гнойных ран и некрэктомии с помощью углекислотного лазера у 62 больных из 100 наблюдалась полная стерильность, а в остальных случаях отмечалось снижение содержания микробов ниже критического уровня (105 ).

Уменьшение степени микробного обсеменения лазерной раны, коагуляционный характер термического некроза и тромбоз сосудов в зоне некроза способствуют снижению экссудативного компонента воспаления. Наличие слабо выраженной лейкоцитарной реакции, а порой и полное ее отсутствие в краях лазерной раны подтверждено работами большинства исследователей. Коагулированные ткани не являются источником вазоактивных посредников, в частности кининов, играющих столь важную роль в становлении и развитии экссудативной фазы воспалительной реакции.

По данным В. И. Елисеенко (1980—1985), для лазерных ран характерна активная ранняя пролиферация клеточных элементов макрофагального и фибробластического ряда, обусловливающая ход репаративного процесса по типу асептического продуктивного воспаления. Пролиферация макрофагов и фибробластов в очаге продуктивного воспаления, начинающаяся с первых суток после воздействия лазерного излучения, лежит в основе формирующейся грануляционной ткани.

Однако имеются данные о том, что заживление лазерных ран может идти обычным путем, т. е. включая фазу лейкоцитарного расплавления некротизированных тканей. Заживление лазерных ран, по данным Ю. Г. Пархоменко (1979, 1983), протекает в основном под лазерным струпом. Преобразование лазерного струпа заключается в постепенной его организации и рассасывании (в паренхиматозных органах — печени и поджелудочной железе) или отторжении (в органах желудочно-кишечного тракта) по мере созревания грануляционной ткани.

Существенное значение в процессе заживления лазерных ран имеют клетки системы мононуклеарных фагоцитов — макрофаги. Макрофаги управляют дифференцировкой гранулоцитов и моноцитов из стволовой клетки, влияют на функциональную активность Т- и В-лимфоцитов, а также принимают участие а их кооперации. Они секретируют шесть первых компонентов комплемента, являясь, таким образом, посредниками привлечения иммунной системы в воспалительную реакцию. Макрофаги индуцируют роль фибробластов и синтез коллагена, т. е. являются стимуляторами завершающей фазы репаративной реакции) при воспалении. В частности, обнаружены клеточные контакты между макрофагами и фибробластами грануляционной ткани.

Можно предположить, что интенсивная и продолжительная макрофагальная реакция в лазерных ранах, связанная с длительной сохранностью коагулированных тканей, является фактором, активно стимулирующим процесс коллагенообразования..По мнению В. И. Елисеенко и соавт. (1982, 1985), функциональная роль пролиферирующих макрофагов заключается в «программировании» всего хода процесса заживления лазерных хирургических ран.

Фибробластическая реакция в процессах раннего заживления лазерных ран занимает одно из ведущих мест.

В лазерных ранах в период активного роста грануляционной ткани (5—10-е сутки) высокая плотность расположения фибробластов сочетается с наиболее резким увеличением активности НАД (НАДФ)-липоамид-дегидрогеназы (устар. диафоразы) в этих клетках, что в определенной степени может отражать повышение в них уровня энергетических и синтетических процессов. Позднее ферментативная активность этих клеток постепенно снижается, что свидетельствует об их созревании.

В формирующемся рубце лазерной раны происходит быстрое, диффузное накопление гликозаминогликанов основного вещества соединительной ткани, что свидетельствует о созревании грануляционной ткани. Известно, что после максимального увеличения числа фибробластов и их созревания усиливается и синтез коллагеновых волокон.

В процессе заживления лазерных хирургических ран органов желудочно-кишечного тракта прослеживается отчетливая взаимосвязь созревания соединительной ткани с ростом эпителия.

Таким образом, реакция макрофагов, пролиферация фибробластов и коллагеногенез проявляются очень рано и выражены тем сильнее, чем менее выражена лейкоцитарная инфильтрация, отсутствие которой обеспечивает заживление лазерных ран первичным натяжением.

7 МЕХАНИЗМЫ ЛАЗЕРНОЙ БИОСТИМУЛЯЦИИ

Отдельно следует рассмотреть вопрос о природе биостимулирующей активности низкоэнергетического лазерного излучения красной области спектра, которое получают главным образом с помощью гелий-неоновых лазеров. Благотворное влияние этого излучения было установлено в экспериментах на разных биологических объектах.

В 70-х годах были сделаны попытки объяснить явление лазерной биостимуляции особыми свойствами («биополе», «биоплазма»), которые якобы присущи живым организмам и придают специфическим характеристикам лазерного излучения биологическую значимость. В 1979 г. было выдвинуто предположение, что биологические эффекты низкоэнергетического лазерного излучения связаны с естественными процессами световой регуляции, наблюдающимися у животных. Молекулярная основа начальных этапов таких процессов лучше изучена у растений, для которых установлены не только сам факт фоторегуляции, но и химическая природа одного из первичных акцепторов света— фитохрома. Этот хромопротеид существует в двух формах, одна из которых поглощает свет вблизи 660 нм, а другая — 730 нм. Вследствие взаимопревращения этих форм при освещении меняется их количественное соотношение, что является пусковым механизмом в цепи процессов, приводящих в конечном счете к прорастанию семян, образованию почек, зацветанию растений и другим формообразовательным эффектам. Хотя не вызывает сомнения тот факт, что и у животных в основе таких явлений, как цикличность полового размножения или приуроченность ряда приспособительных реакций (линька и спячка млекопитающих, перелеты птиц) к определенным периодам года, лежат фоторегуляторные процессы, молекулярные механизмы их неясны

Представления о существовании в клетках животных определенной фоторегуляторной системы, возможно, напоминающей фитохромную систему растений, позволяют предположить, что биостимуляционная активность излучения гелий-неонового лазера является следствием простого совпадения его спектральных характеристик с областью поглощения компонентов этой системы. В этом случае следовало ожидать, что монохроматический красный свет некогерентных источников будет также биологически эффективным. Для экспериментальной проверки этого и других вопросов были необходимы чувствительные тесты, дающие количественные, хорошо воспроизводимые и точно измеряемые результаты. Подавляющее большинство исследований с гелий-неоновым лазером было проведено на животных или непосредственно на больных в условиях, не отвечающих этим требованиям.

При выборе подходящей модельной системы исходили из двух предпосылок: 1) клетки, развивающиеся или переживающие в условиях invitro, представляют собой сравнительно простой тест-объект, позволяющий проводить точный учет условий воздействия и его результатов; 2) особого внимания заслуживает реакция поверхностной мембраны клеток, высокая чувствительность которого установлена ранее в опытах с низкоэнергетическим красным излучением рубинового лазера .

В исследованиях, проведенных Н. Ф. Гамалея и др. было изучено влияние излучения гелий-неонового лазера на поверхностную мембрану лимфоцитов, выделенных из крови человека. С этой целью оценивали способность лимфоцитов образовывать Е-розетки — взаимодействовать с эритроцитами барана. Установлено, что при низких дозах облучения (плотность мощности 0,1—0,5 Вт/м2 , экспозиция 15 с), которые на полтора —два порядка ниже, чем используемые в клинических работах с гелий-неоновым лазером, происходит небольшое, но статистически достоверное повышение розеткообразовательной способности (в 1,2—1,4 раза) у облученных лимфоцитов по сравнению с контролем. Параллельно с цитомембранными изменениями повышалась функциональная активность лимфоцитов, в частности в 2— 6 раз возрастала их способность к делению, которую определяли в реакции бласттрансформации с фитогемагглютинином [Новиков Д. К., Новикова В. И., 1979], оценивая по накоплению клетками 3 Н-тимидина. В экспериментах на лейкоцитах крови человека было установлено, что при воздействии на них излучения гелий-неонового лазера в таких же низких дозах в 1,5—2 раза усиливается фагоцитоз клетками кишечной палочки (как захватывание, так и переваривание). Излучение гелий-неонового лазера оказывало стимулирующее действие также на другие клетки. Так, в культуре опухолевых клеток мыши (L) задержка их роста в 1-е сутки после облучения сменялась его ускорением, которое было особенно заметно на 3—4-е сутки, когда количество делящихся клеток в 2 раза больше, чем в контроле

Таким образом, было показано, что излучение гелий-неонового лазера очень низкой интенсивности вызывает изменения в мембране клеток разных типов и стимуляцию их функциональной активности. Изменения цитоплазматической мембраны в культивируемых клетках китайского хомячка, облученных гелий-неоновым лазером, выявили также А. К. Абдвахитова и др. (1982) с помощью метода флюоресцентных зондов, хотя использованные ими дозы излучения на два порядка превышали примененные нами.

В гипотезе, выдвинутой венгерским хирургом Е. Местером совместно с группой физиков, предпринята попытка объяснить биостимуляционную активность лазерного излучения исключительно его поляризованностью: благодаря поляризации излучения оно способно реагировать с полярными молекулами липидов в двойном липидном слое цитоплазматической мембраны, что и запускает цепь изменений в клетке. Согласно предложенной модели, стимулирующий эффект не должен зависеть от длины волны излучения. Однако экспериментальные данные этого не подтверждают.

Надежная воспроизводимость биостимуляционного эффекта позволила пойти дальше и попытаться выяснить, вызывается ли этот эффект только лазерным (когерентным, поляризованным) излучением и как он зависит от длины волны. С этой целью путем применения теста на розеткообразование было оценено влияние на лимфоциты крови человека монохроматического красного света (633 ± 5 нм), полученного от ксеноновой лампы с помощью дифракционного монохроматора. Установлено, что при сравнимой дозе некогерентного красного света (3 Дж/м3 ) процесс розеткообразования стимулировался так же, как и при использовании гелий-неонового лазера.

Далее эффект красного света был сопоставлен с действием излучения других узких спектральных участков видимой области. При этом активность света оценивали по его влиянию на три процесса: образование Е-розеток лимфоцитами человека, размножение клеток культуры L и выделение в среду лимфоцитами мышей вещества с максимумом поглощения 265 нм. (Последний тест являлся развитием результатов проведенных наблюдений и основывался на том, что из подвергнутых лазерному облучению клеток усиливается выделение определенного химического фактора, имеющего полосу поглощения в области 260— 265 нм.) Опыты показали , что стимуляция всех трех процессов отмечается при облучении монохроматическим светом одних и тех же спектральных участков: красного (633 нм), зеленого (500 и 550 нм) и фиолетового (415 нм).

Таким образом проведенные исследования позволили выявить у разных клеток человека и животных наличие высокой световой чувствительности, даже значительно большей, чем можно было ожидать на основании клинических результатов лазерной биостимуляционной терапии. Эта чувствительность не была обусловлена когерентностью и поляризацией света и не ограничивалась красной областью спектра: наряду с максимумом в этой области имелись два других — в фиолетовом и зеленом участках спектра.

Используя иной методический подход (определение интенсивности синтеза ДНК в клетках культуры HeLa по включению меченого тимидина), Т. Й. Кару и др. (1982, 1983) также показали, что эффект биостимуляции не связан с когерентностью и поляризацией света. В выполненных ими опытах с облучением клеток красным светом максимальная стимуляция синтеза ДНК наблюдалась при дозе 100 Дж/м2 и эффект быстро снижался при ее изменении в любую сторону. При сравнении активности излучения в различных участках спектра были установлены три максимума: вблизи 400, 630 и 760 нм.

К механизму световой биостимуляции. может иметь отношение образование в облученных клетках и выделение ими того химического фактора, который обнаруживали в среде по пику светоабсорбции вблизи 265 нм. Для выяснения природы этого фактора были проведены хроматография на бумаге и электрофорез в агарозном геле с визуализацией зон бромистым этидием, позволившие обнаружить в выделяемом клетками материале двуспиральную ДНК с молекулярной массой. Двуспиральность структуры ДНК подтверждалась появлением гиперхромного эффекта при нагревании.

Приводимые в литературе сведения о способности нуклеиновых кислот ускорять восстановление поврежденных тканей [Белоус А. М. и др., 1974] подтверждали возможную причастность выделяемого клетками ДНК-фактора к световой биостимуляции. Для проверки этой гипотезы был поставлен эксперимент на клетках линии L, часть из которых облучали гелий-неоновым лазеpoм, а другую часть, которая не была облучена, помещали, однако, в среду, взятую от облученных клеток и, следовательно, содержавшую ДНК-фактор. Определение скорости роста (митотической активности) клеток показало, что в обеих группах развитие клеток по сравнению с контролем стимулировалось одинаково Более того, разрушение ДНК в среде, взятой от облученных клеток, с помощью фермента ДНКазы лишало эту среду биостимулирующей активности. Сама ДНКаза на рост клеток практически не влияла .

Следовательно, можно думать, что и при действии на ткани целостного организма (например, при лазерной терапии трофических язв) облучение клеток на периферии патологического очага приводит к выделению ими ДНК-фактора, который стимулирует рост фибробластических элементов в тканях, окружающих язву, тем самым ускоряя ее заживление. Однако однозначное доказательство этого может быть получено лишь в опытах на животных.

Таким образом, представленные данные, по-видимому, являются обоснованием целесообразности применения лазерной (или вообще световой биостимуляции) в лечебных целях и указывают пути дальнейшего развития этого метода. Эти данные имеют и более широкое фитобиологическое значение, состоящее в том, что впервые установлена специфическая световая чувствительность неретинальных (незрительных) клеток человека и животных, которая характеризуется рядом особенностей. Эта чувствительность спектрально зависима и чрезвычайно высока: использованные нами плотности мощности, равные десятым долям ватта на квадратный метр, сравнимы с теми, которые являются эффективными для фоторегуляторных систем растений .Как удалось установить с помощью теста на выделение ДНК-фактора, такой фоточувствительностью обладают клетки человека и животных разной видовой принадлежности, взятые из тканей и органов: лимфоциты мыши, собаки и человека, печеночные клетки крысы, клетки культур, полученных из фибробластов человека, почки хомяка и озлокачествленных фибробластов мыши.

Все эти факты подтверждают предположение о том, что у млекопитающих имеется специальная система восприятия света, возможно, подобная фитохромной системе растений и также выполняющая регуляторные функции. О сходстве предполагаемой фоточувствительной системы животных с системой фитохромной регуляции свидетельствует сравнение их основных особенностей.Помимо высокой световой чувствительности, фитохромной системе свойственны недозовый (триггерный) характер действия, который заставляет вспомнить и, может быть, объясняет большую вариабельность доз (с различиями в два порядка), используемых клиницистами для лазерной биостимуляции; сопряженность фитохромной системы (так же, как и описанных нами эффектов) с клеточными мембранами; контроль фитохромной системы над синтезом ДНК,РНК и белка, образование которых в тканях, облученных гелий-неоновым лазером, по данным многих авторов, также усиливается.

В том случае, если в клетках животных действительно имеется специализированная фоточувствительная система, тогда с помощью опытов по определению спектра действия (зависимости величины биологической реакции от длины волны) можно попытаться установить спектр поглощения (а по нему — и химическую индивидуальность) того соединения, которое является первичным акцептором света и запускает цепь процессов, приводящих в конечном итоге к фоторегуляторным эффектам. Соответствие между спектрами действия и спектром поглощения светоакцептора достигается, однако, лишь в том случае, если при постановке экспериментов выполняется ряд методических условий, что на практике является весьма сложной задачей

Тем не менее нельзя не обратить внимание на сходство всех трех кривых, характеризующих спектральную зависимость различных апробированных нами биологических эффектов, с типичным спектром поглощения порфириновых соединений. Это позволяет полагать, что светоакцептором в гипотетической системе фоторегуляции животных клеток служит какое-то соединение из группы порфиринов, являющихся, как известно, составной частью многих важных биохимических компонентов организма животных — гемоглобина, цитохромов, ряда ферментов и др. С. М. Зубкова (1978) высказала предположение, что биостимулирующее действие излучения гелий-неонового лазера связано с его поглощением порфиринсодержащим ферментом каталазой, имеющим максимум светоабсорбции ~628 нм. Облучение клеток на периферии патологического очага приводит к выделению ими ДНК-фактора, который стимулирует рост фибробластических элементов в тканях, окружающих язву, тем самым ускоряя ее заживление. Однако однозначное доказательство этого может быть получено лишь в опытах на животных.

Таким образом, представленные данные, по-видимому, являются обоснованием


8-09-2015, 23:29


Страницы: 1 2 3 4 5
Разделы сайта