С.П. Курдюмов, Г.Г. Малинецкий
Громада двинулась и рассекает волны. Плывет. Куда ж нам плыть?
А.С. Пушкин
Синергетика в контексте культуры
Опыт в развитии междисциплинарных исследований научное сообщество накопило небольшой. Развитие кибернетики имеет только полувековую историю, а возраст синергетики -всего три с небольшим десятилетия.
Поэтому у нас нет возможности, как у умудренных жизнью мэтров, пользоваться оборотами "как всегда", "как это обычно бывает", "помнится раньше" ... У нас все впервые. И это гораздо интереснее.
Многие черты в развитии синергетики и современной науки в целом выглядят как парадоксальные. Удачное слово "синергетика", родившееся с легкой руки Германа Хакена, в 70-х годах быстро завоевало популярность. Сначала в него вкладывали простой и ясный смысл. Синергетика - это теория самоорганизации в системах различной природы. Она имеет дело с явлениями и процессами, в результате которых у системы - у целого - могут появиться свойства, которыми не обладает ни одна из частей. Поскольку речь идет о выявлении и использовании общих закономерностей в различных областях, то этот подход предполагает междисциплинарность. Последнее означает сотрудничество в разработке синергетики представителей различных научных дисциплин.
Время шло, собирались научные конференции, издавались отличные книги, о которых хочется вспомнить добрым словом. Дело дошло до учебников и даже до преподавания синергетики не только в вузах, но и в средних школах. (Блестящий опыт такого рода имеется в Саратовском колледже прикладных наук, существующем под крылом местного университета.)
Все примерно так же, как у других наук. Один из авторов этих строк даже сравнивал первые международные конференции по синергетике с Сольвеевскими конгрессами, сыгравшими важную роль на заре квантовой механики. Однако нет, не все так просто. Чтобы убедиться в этом, достаточно перелететь через океан. Например, такие привычные понятия, как "параметры порядка", "диссипативные структуры", "самоорганизация", и многие другие синергетические термины не знакомы большинству местных исследователей, не говоря уже о студентах. Неведомы им и "синергетические классики".
Как же они без этого обходятся? Очень просто - они опираются, занимаясь теми же задачами, на другие работы, иногда на иной аппарат и, разумеется, на местных классиков. Вместо "самоорганизации" говорят о "выходе системы на инерциальное многообразие", вместо "синергетики" - об "идеях теории сложности" и так далее.
За этим курьезным фактом стоят не только амбиции ученых (роль "субъективных факторов" в развитии науки трудно переоценить), но и важные особенности синергетики, отличающие ее от "обычной" науки. Почему сравнительно просто научить школьной алгебре, геометрии или физике? Потому что, во-первых, есть небольшой конкретный материал про то, что и как вычислять, строить или измерять в простейших случаях. Во-вторых, есть четко очерченная область, в которой эти правила следует применять, чтобы получать ответы, за которые поставят пятерку, а то и дадут приз на олимпиаде. То же относится и к другим физико-математическим наукам.
Синергетика от этой благостной картины отличается в двух отношениях. Во-первых, в ней нет простых и ясных рецептов, что и как надо считать. Она, скорее, помогает задавать вопросы, искать системы, которые могут обладать необычными свойствами, выделять общие черты в конкретной задаче. Разумеется, в ней есть и концепции, и понятия, и модели, и аппарат. Но применимы ли они к той проблеме, с которой пришел в синергетику исследователь или которую он собирается поставить, обычно совершенно не ясно. В "хороших науках" дело обстоит не так - если есть задача в задачнике, то точно все должно быть применимо. И дело только в изобретательности и настойчивости применяющего. Во-вторых, междисциплинарность подразумевает два этапа. На первом специалист из какой-то области обращается к идеям и представлениям синергетики. Применяет их к своей проблеме. Это удается очень многим. На втором этапе он возвращается с полученным результатом в свою область и убеждается сам в нетривиальности последнего и демонстрирует ее коллегам. Со вторым этапом справляется гораздо меньшее количество ученых.
"Искусству задавать вопросы" научить намного труднее, чем "искусству получать ответы". Первое в гораздо большей степени зависит от научного и общекультурного контекста, с которым работает ученый. Как говорят филологи и специалисты по машинному переводу, текст обычно содержит лишь 10% информации, 90% определяется контекстом, который мы привносим, воспринимая сообщение. По-видимому, этот синергетический эффект относится и к научному творчеству. С другой стороны, междисциплинарные подходы очень обогащают тот контекст, в котором работает ученый.
Вероятно, поэтому отечественной научной культуре обобщающие идеи синергетики оказались очень близки. Для многих классиков русской и советской науки было характерно стремление увидеть общее в различных дисциплинах и на этой основе получить оригинальные результаты в каждой их них. При этом организация дальнейших исследований, усилия по изменению отношения общества к научным результатам, выращивание учеников, непосредственное участие в государственных делах ценились научным сообществом весьма высоко.
Вспомним М.В. Ломоносова, который занимался и химией, и физикой, и историей, и филологией, который "сам был нашим первым университетом". Дмитрий Иванович Менделеев был не только великим химиком, видным общественным деятелем, много сделавшим для развития промышленности в целом, и нефтехимии в частности, в своем отечестве. Он был блестящим профессором, написавшим основополагающие учебники, демографом, выдающимся экономистом. И свои работы по обоснованию государственной поддержки отечественных предпринимателей - политики протекционизма - сам он оценивал не менее высоко, чем свои исследования по химии.
Любопытно, что и в то время "междисциплинарность" опиралась на прочный естественнонаучный фундамент, на использование математики. В этой связи интересна мысль одного из самых блестящих политиков России - Сергея Юльевича Витте, способствовавшего многократному увеличению протяженности сети железных дорог, осуществившего одну из наиболее удачных денежных реформ, заложившего основы политехнического образования в России и предсказавшего ход исторических процессов на десятилетия вперед. Он, получивший физико-математическое образование, делил всех математиков на "математиков-вычислителей" и "математиков-философов". С.Ю.Витте ценил вторых гораздо выше а полагал, что их мнение, совет и исследования могут быть весьма важны в государственных делах.
Широтой интересов отличался и В.И. Вернадский. С одной стороны, он - основатель геохимии и организатор ряда геологических изыскательских работ. С другой, глубокий философ, увидевший в формировании ноосферы надежду для человечества, прозорливо предсказавший огромное будущее атомной энергии на заре XX века.
Президент Академии наук СССР М.В. Келдыш, с именем которого связывают успехи в освоении космоса, в создании ряда систем стратегических вооружений в нашей стране, пришел в науку как чистый математик. На его научном пути - и работы по теории несамосопряженных операторов, и теория флаттера, давшая ключ к пионерским инженерным решениям, и обоснование научной стратегии сверхдержавы, и мечты о дальнем космосе.
Большое влияние на отечественные междисциплинарные исследования в последние десятилетия оказывала деятельность недавно ушедшего от нас академика Н.Н. Моисеева. Его работы по автоматическому управлению, нелинейной механике, анализу экономических механизмов, оптимизации, системам поддержки принятия решений, рефлексивным процессам привели к созданию ярких самобытных научных школ. Последние его работы по экологии, связанные с концепцией устойчивого развития, по философии, где он выдвинул концепцию универсального эволюционизма, по анализу сценариев выхода России из системного кризиса не всегда находили понимание. Помнится, с какой горечью он рассказывал одному из авторов о своей беседе с высокопоставленным (впрочем, правильнее, наверное, было бы писать в два слова) чиновником. Он предложил развернуть работы по научному обоснованию стратегических транспортных проектов - трансевразийской магистрали и Северного морского пути. Великий "путь из англичан в японцы", как он говорил, возможен благодаря уникальному евразийскому положению России и ее научно-техническому потенциалу. "Вы - математик. Ну и занимайтесь математикой, а в наши дела не лезьте", - услышал он в ответ на свои предложения. Но времена меняются. Давно простыл след временщика, беседовавшего с академиком. А многие идеи Н.Н. Моисеева вновь и вновь переосмысливаются или переоткрываются.
Но ведь возможно и другое отношение к науке, ей может принадлежать иное место в культуре. В одной из книг Джордж Сорос поставил под сомнение саму концепцию объективной истины. При таком взгляде развитие науки представляется дорогой от одного заблуждения к другому, возможно, более удобному и выгодному в данной конкретной ситуации. Если же появляется еще и "рыночный компонент", возможность с помощью рынка "оценить" ученого, то все еще более упрощается. Небезызвестный герой Джона Голсуорси считал, имея в виду искусство, что любая ерунда, за которую платят деньги, уже не ерунда. Но с такой же меркой можно подойти и к науке.
Для такой "рыночной" организации науки большой ценностью оказывается конкретность и узкая специализация, а не широта мышления или целостность восприятия проблемы. Естественно, в таком научном сообществе междисциплинарные подходы не будут слишком популярны. (Впрочем, там есть свои и достаточно большие плюсы.)
Существует широко распространенная иллюзия, что Интернет принципиально изменил стиль научной работы. На первый взгляд, кажется, что иначе и быть не может. Во-первых, стало возможно создание "виртуальных лабораторий", сотрудники которых могут жить на разных материках, но тем не менее работать вместе. Во-вторых, стали широко доступными огромные массивы информации и банки данных. В-третьих, предоставлена возможность сообщать о результатах практически фазу после их получения. В-четвертых, появились телеконференции, где можно вести дискуссии со многими оппонентами и эффективно выявлять недостатки той или иной позиции.
Тем не менее, на наш взгляд, глобальные компьютерные сети изменили науку гораздо меньше, чем торговлю, промышленность, банковское дело, средства массовой информации или индустрию развлечений. Причина этого проста - самым инертным и самым важным звеном в науке является человек. Научный прогресс лимитируется не быстродействием компьютеров или объемом банков данных, а нашей способностью генерировать новые идеи, осмысливать информацию, искать причинно-следственные связи.
Более того, во многих отношениях ситуация стала хуже. Огромный поток информации заставляет узко и избирательно просматривать очень малый фрагмент какой-либо области знаний. Не редки ситуации, когда близкие соседи не знают об исследованиях друг друга. Во времена Ньютона и Лейбница, когда не было научных журналов в нынешнем понимании слова, один исследователь слал письма другому. В нынешней ситуации коллеги, как правило, не представляют себе, в чем суть твоей работы, если ты им лично не послал статью по электронной почте. На новом уровне мы вернулись к прежнему положению вещей.
Но ведь искусство невозможно без зрителей, слушателей, читателей, так же как наука - без коллег, без среды, без обсуждения, без критики, без диалога. В нынешней ситуации все это обеспечивают научные семинары, проводимые в институтах или университетах. Неформальное научное сообщество, к которому относят себя авторы настоящего сборника, во многом сложилось благодаря научному семинару по нелинейной динамике в Институте прикладной математики им. М.В. Келдыша РАН. О проблемах, обсуждавшихся на нем, дают представление несколько книг, вышедших в этой серии в "Науке" и других издательствах.
История показывает, что в переломные моменты развития науки и технологии наблюдались несколько типичных явлений. Первое - неоправданный оптимизм в отношении новшеств и новых научных направлений. Второе - большая роль личных контактов между исследователями. Гораздо большая, чем в периоды медленного, эволюционного развития.
Поэтому и в нынешней отечественной синергетике огромную роль играют регулярно проводимые научные конференции, школы, семинары, другие встречи, позволяющие передавать не только идеи, но и традиции от одних поколений к другим. В качестве "хрестоматийных" примеров можно привести школы для молодых ученых и конференции, проводимые в Саратове под началом ректора Саратовского государственного университета член-корр. РАН Д.И.Трубецкова и его коллег. Другой пример - ежегодные конференции "Математика, компьютер, образование", проводимые во многом благодаря энергии и самоотверженности профессора кафедры биофизики биофака МГУ, президента ассоциации "Женщины в науке и образовании" Г.Ю. Резниченко. Большое влияние на "нелинейное научное сообщество" оказывают международные конференции "Проблемы управления безопасностью сложных систем", проводимые в Институте проблем управления РАН профессором В.В. Куль-бой и его единомышленниками.
В последние 10 лет эти конференции позволили решить еще одну важную задачу - найти место междисциплинарных исследований, увидеть те проблемы, области, "экологические ниши", где такие работы могут быть поняты и востребованы. Не секрет, что значительная часть междисциплинарных исследований за рубежом проводилась и сейчас проводится по заказам государственных структур, формирующих стратегию и политику, по заказам военно-промышленного комплекса, заинтересованного в поиске принципиально новых решений и технологий. В самом деле, исследование операций выросло в основном из задач планирования боевых действий, анализ диссипативных структур - из физики плазмы, теории горения и взрыва, исследования динамического хаоса - из задач прогноза и методик защиты информации. Ведущие военно-промышленные центры становились и лидерами в области нелинейных исследований. Например, Центр нелинейных исследований в Лос-Аламосе (США) вырос из лаборатории, занимавшейся ядерным оружием. В Институте прикладной математики им. М.В. Келдыша РАН интенсивное развитие методов нелинейного анализа и их применение опиралось на научный фундамент, заложенный при решении оборонных задач.
Когда этот государственный и военно-промышленный заказ на "нелинейную науку" в нашей стране на длительное время исчез, пришлось всерьез пересматривать тематику, существенно менять акценты. На наш взгляд, это удалось сделать. Это наглядно показывают и статьи, вошедшие в настоящий сборник. Исследователи, как убедится читатель, шли разными путями. Одни сосредоточили внимание на математическом аппарате синергетики, другие увидели высокие технологии, где концепции, методы, идеи синергетики дают новые возможности, третьи связали нелинейную динамику с глобальными проблемами, с управлением, с новыми стратегиями, четвертые ищут место синергетики в гуманитарных областях. И кроме того, нельзя упускать из виду возможность, что сменится поколение руководителей, и вместо того, чтобы ломать и бездумно копировать, новые люди будут строить и искать свои пути в будущее. Тогда, глядишь, и традиционные задачи, связанные с междисциплинарными исследованиями, окажутся востребованными.
На конференциях, где рассматривались проблемы искусствоведения или культурологии с позиций синергетики, часто вставал вопрос: к какому стилю, к какому направлению искусства синергетика ближе всего по духу. Выскажем и наше мнение. Конечно, это не постмодерн с его эклектикой, технологией комбинирования различных фрагментов, коллажем из предшествующих идей, штампов, приемов, образов. Это, скорее, стремление увидеть предмет в его целостности. Синергетика предлагает новое видение, новые способы упрощать реальность. Эта "новая простота" помогает не "утонуть" в деталях и порой выглядит достаточно необычно. Например, задачи и подходы "синергетической экономики" или "рефлексивной теории управления" кажутся странными и парадоксальными, с точки зрения традиционных подходов. Но именно эти синергетические подходы гораздо ближе к описанию многих явлений в новой реальности - глобальных финансовых кризисов, роста "новой экономики" (knowledge-based economy, как ее называют наши англоязычные коллеги). Поэтому, вероятно, нынешнему этапу развития синергетики созвучны образы и мировидение импрессионизма. Здесь и обостренное внимание к целому, к тому, что делает его большим, чем сумма слагающих его частей. Здесь и новое отношение к вечному и преходящему, акцент на переходных, переломных, ускользающих от неспешного наблюдения моментах. Это новые краски, образы.
Авторам этих строк часто приходилось отвечать на вопрос - чем взгляд и подход синергетики отличается "от того, что было раньше". Начнем издалека. Ньютон, Лаплас, классики эпохи Просвещения смотрели на мир "с позиции Господа Бога". Это, с одной стороны, вера в глубину и совершенство замысла Творца и надежда, что простые универсальные законы существуют, познаваемы, а их использование будет исключительно полезным. Это вера в торжество разума - как бы ни были сложны уравнения, следующие из этих законов, сколько бы их ни было, их удастся решить. Это глобальный детерминизм - уверенность в том, что можно, решив уравнения, заглянуть как угодно далеко в будущее и в прошлое.
Времени с тех пор минуло много. И на новом витке развития науки эти идеи и представления возродились в связи с быстрым ростом возможностей компьютеров. Наверное, некоторые из читателей этой книги помнят, как строились имитационные модели в экономике, в медицине, в биологии, в экологии. Сотни и тысячи уравнений, сотни тысяч параметров, потребных для моделей, не смущали энтузиастов. Многим, видимо, помнятся речи о вычислительном эксперименте. Последний должен был дать огромный импульс развитию науки, позволяя учитывать десятки и сотни эффектов, извлекать из теории следствия, о которых раньше и не мечтали. И, конечно, все это чище, дешевле, точнее и быстрее, чем в обычном эксперименте. Можно упомянуть и бум с автоматизированными системами управления, сулившими огромные перспективы.
Энтузиасты этих подходов не видели ни пределов, ни ограничений. Одному из авторов довелось слышать по этому поводу на научном семинаре такой диалог.
-А есть ли задачи, к которым такой подход неприменим? - спросил потрясенный открывшимися перспективами слушатель,
- Может быть и есть, но я ни одной такой не знаю, - с гордостью и уверенностью ответствовал докладчик.
Но пределы обнаружились. И довольно быстро. Во-первых, принципиальные, объективные, независимые от человека, В теории динамического хаоса - важной области нелинейной науки- было убедительно показано, что даже для довольно простых детерминированных систем (в которых будущее однозначно определяется настоящим) существует горизонт прогноза. Заглянуть за этот горизонт в общем случае нельзя, какую бы мощную вычислительную технику и какие бы эффективные алгоритмы исследователи ни использовали. Сейчас теория само организованной критичности - новый фаворит синергетики - показывает, что
29-04-2015, 02:07