Современная прикладная статистика

интервальных дифференциальных уравнений, в которых коэффициенты, начальные условия и решения описываются с помощью интервалов.

Ведущая научная школа в области статистики интервальных данных - это школа проф.А.П.Вощинина, активно работающая с конца 70-х годов. Полученные результаты отражены в ряде монографий (см., в частности, [47,48,49]), статей [44], докладов [45], диссертаций [50,51]. В частности, изучены проблемы регрессионного анализа, планирования эксперимента, сравнения альтернатив и принятия решений в условиях интервальной неопределенности.

Рассмотрим другое направление в статистике интервальных данных, которое также представляется перспективным. В нем развиваются асимптотические методы статистического анализа интервальных данных при больших объемах выборок и малых погрешностях измерений. В отличие от классической математической статистики, сначала устремляется к бесконечности объем выборки и только потом - уменьшаются до нуля погрешности. В частности, с помощью такой асимптотики были сформулированы правила выбора метода оценивания параметров гамма-распределения в ГОСТ 11.011-83 [24].

В развитие идей, сформулированных в [52,53], разработана общая схема исследования, включающая расчет нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания). Она применена к оцениванию математического ожидания, дисперсии, коэффициента вариации, параметров гамма-распределения и характеристик аддитивных статистик, при проверке гипотез о параметрах нормального распределения, в т.ч. с помощью критерия Стьюдента, а также гипотезы однородности с помощью критерия Смирнова. Разработаны подходы к рассмотрению интервальных данных в основных постановках регрессионного, дискриминантного и кластерного анализов. В частности, изучено влияние погрешностей измерений и наблюдений на свойства алгоритмов регрессионного анализа, разработаны способы расчета нотн и рациональных объемов выборок, введены и исследованы новые понятия многомерных и асимптотических нотн, доказаны соответствующие предельные теоремы. Начата разработка интервального дискриминантного анализа, в частности, рассмотрено влияние интервальности данных на введенный нами показатель качества классификации. Изучено асимптотическое поведение оценок метода моментов и оценок максимального правдоподобия (а также более общих - оценок минимального контраста), проведено асимптотическое сравнение этих методов в случае интервальных данных. Найдены общие условия, при которых, в отличие от классической математической статистики, метод моментов дает более точные оценки, чем метод максимального правдоподобия (см. статью [54], в которой приведены также ссылки на другие публикации, относящиеся к рассматриваемому направлению в статистике интервальных данных)..

Как показала, в частности, международная конференция ИНТЕРВАЛ-92, в области асимптотической математической статистики интервальных данных российская наука имеет мировой приоритет. Развертывание работ по рассматриваемой тематике позволит закрепить этот приоритет, получить теоретические результаты, основополагающие в новой области математической статистики и необходимые для обоснованного статистического анализа почти всех типов данных. Со временем во все виды статистического программного обеспечения должны быть включены алгоритмы интервальной статистики, "параллельные" обычно используемым алгоритмам прикладной математической статистики. Это позволит в явном виде учесть наличие погрешностей у результатов наблюдений, сблизить позиции метрологов и статистиков.

9. Статистика объектов нечисловой природы

как часть прикладной статистики

Согласно классификации статистических методов, принятой в [55-56], прикладная статистика делится на следующие четыре области:

статистика (числовых) случайных величин,

многомерный статистический анализ,

статистика временных рядов и случайных процессов,

статистика объектов нечисловой природы.

Первые три из этих областей являются классическими. Остановимся на четвертой, только еще входящей в массовое сознание специалистов. Ее именуют также статистикой нечисловых данных или попросту нечисловой статистикой.

Исходный объект в математической статистике - это выборка. В вероятностной теории статистики выборка - это совокупность независимых одинаково распределенных случайных элементов. Какова природа этих элементов? В классической математической статистике (той, что обычно преподают студентам) элементы выборки - это числа. В многомерном статистическом анализе - вектора. А в нечисловой статистике элементы выборки - это объекты нечисловой природы, которые нельзя складывать и умножать на числа. Другими словами, объекты нечисловой природы лежат в пространствах, не имеющих векторной структуры.

Примерами объектов нечисловой природы являются (см. также обзоры [56-57]):

значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций);

упорядочения (ранжировки) экспертами образцов продукции (при оценке ее технического уровня и конкурентоспособности)) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов);

классификации, т.е. разбиения объектов на группы сходных между собой (кластеры);

толерантности, т.е. бинарные отношения, описывающие сходство объектов между собой, например, сходства тематики научных работ, оцениваемого экспертами с целью рационального формирования экспертных советов внутри определенной области науки;

результаты парных сравнений или контроля качества продукции по альтернативному признаку ("годен" - "брак"), т.е. последовательности из 0 и 1;

множества (обычные или нечеткие), например, зоны, пораженные коррозией, или перечни возможных причин аварии, составленные экспертами независимо друг от друга;

слова, предложения, тексты;

вектора, координаты которых - совокупность значений разнотипных признаков, например, результат составления статистического отчета о научно-технической деятельности (форма No.1-наука) или заполненная компьютеризированная история болезни, в которой часть признаков носит качественный характер, а часть - количественный;

ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты; и т.д.

Интервальные данные (см. выше) тоже можно рассматривать как пример объектов нечисловой природы, а именно, как частный случай нечетких множеств.

С начала 70-х годов под влиянием запросов прикладных исследований в технических, медицинских и социально-экономических науках в России активно развивается статистика объектов нечисловой природы, известная также как статистика нечисловых данных или нечисловая статистика. В создании этой сравнительно новой области прикладной математической статистики приоритет принадлежит российским ученым.

Большую роль сыграл основанный в 1973 г. научный семинар "Экспертные оценки и анализ данных". В 60-е годы советское научное сообщество стало интересоваться методами экспертных оценок (об их истории и современном состоянии см. обзор [58]). Как следствие, началось знакомство с конкретными математизированными теориями, связанными с этими методами. Речь идет о репрезентативной теории измерений, ставшей известной в нашей стране по статье П.Суппеса и Дж.Зинеса в сборнике [59] и книге И.Пфанцагля [60], о теории нечеткости Л.А.Заде [61], теории парных сравнений, описанной в монографии Г.Дэвида [62]. К этому кругу идей примыкают теория случайных множеств (см., например, книгу Ж.Матерона [63]) и методы многомерного шкалирования (описаны в монографиях А.Ю.Терехиной [64] и В.Т.Перекреста [65]). Но наибольшее влияние оказали идеи Дж.Кемени, который аксиоматически ввел расстояние между ранжировками (теперь оно именуется в литературе расстоянием Кемени) и предложил использовать в качестве средней величины решение оптимизационной задачи (теперь - медиана Кемени). Его скромная книжка [66], написанная в соавторстве с Дж.Снеллом, породила большой поток исследований.

В течение 70-х годов на основе запросов теории экспертных оценок (а также социологии, экономики, техники и медицины) развивались конкретные направления статистики объектов нечисловой природы. Были установлены связи между конкретными видами таких объектов, разработаны для них вероятностные модели (см. обзор [67]). Итоги этого периода подведены в монографиях [35,68,69]).

Следующий этап - выделение статистики объектов нечисловой природы в качестве самостоятельного направления в прикладной статистике, ядром которого являются методы статистического анализа данных произвольной природы. Программа развития этого нового научного направления впервые была сформулирована в статье [70]. Реализация этой программы была осуществлена в 80-е годы. Для работ этого периода характерна сосредоточенность на внутренних проблемах нечисловой статистики. Ссылки на конкретные монографии, сборники, статьи и иные публикации нескольких десятков авторов приведены в обзорах [56,57,67]. Отметим лишь сборник [71], специально посвященный нечисловой статистике, и диссертацию [72], относящуюся к непараметрической теории парных сравнений.

К 90-м годам статистика объектов нечисловой природы с теоретической точки зрения была достаточно хорошо развита, основные идеи, подходы и методы были разработаны и изучены математически, в частности, доказано достаточно много теорем. Однако она оставалась недостаточно апробированной на практике. Это было связано как с ее сравнительной молодостью, так и с общеизвестными особенностями организации науки в 80-е годы, когда отсутствовали достаточные стимулы к тому, чтобы теоретики занялись широким внедрением своих результатов. И в 90-е годы наступило время от математико-статистических исследований перейти к применению полученных результатов на практике. Эта тенденция хорошо отражена в монографиях [73,74], материалах международной конференции "Управление большими системами" [75].

Следует отметить, что в статистике объектов нечисловой природы, как и в других областях прикладной математической статистики и прикладной математики вообще, одна и та же математическая схема может с успехом применяться и в технических исследованиях, и в медицине, и в социологии, и для анализа экспертных оценок, а потому ее лучше всего формулировать и изучать в наиболее общем виде, для объектов произвольной природы.

10. Основные идеи статистики объектов нечисловой природы

В чем принципиальная новизна нечисловой статистики? Для классической математической статистики характерна операция сложения. При расчете выборочных характеристик распределения (выборочное среднее арифметическое, выборочная дисперсия и др.), в регрессионном анализе и других областях этой научной дисциплины постоянно используются суммы. Математический аппарат - законы больших чисел, Центральная предельная теорема и другие теоремы - нацелены на изучение сумм. В нечисловой же статистике нельзя использовать операцию сложения, поскольку элементы выборки лежат в пространствах, где нет операции сложения. Методы обработки нечисловых данных основаны на принципиально ином математическом аппарате - на применении различных расстояний в пространствах объектов нечисловой природы.

Кратко рассмотрим несколько идей, развиваемых в статистике объектов нечисловой природы для данных, лежащих в пространствах произвольного вида. Решаются классические задачи описания данных, оценивания, проверки гипотез - но для неклассических данных, а потому неклассическими методами.

Первой обсудим проблему определения средних величин. В рамках репрезентативной теории измерений удается указать вид средних величин, соответствующих тем или иным шкалам измерения [35]. В классической математической статистике средние величины вводят с помощью операций сложения (выборочное среднее арифметическое, математическое ожидание) или упорядочения (выборочная и теоретическая медианы). В пространствах произвольной природы средние значения нельзя определить с помощью операций сложения или упорядочения. Теоретические и эмпирические средние приходится вводить как решения экстремальных задач. Для теоретического среднего это - задача минимизации математического ожидания (в классическом смысле) расстояния от случайного элемента со значениями в рассматриваемом пространстве до фиксированной точки этого пространства (минимизируется указанная функция от этой точки). Для эмпирического среднего математическое ожидание берется по эмпирическому распределению, т.е. берется сумма расстояний от некоторой точки до элементов выборки и затем минимизируется по этой точке. При этом как эмпирическое, так и теоретическое средние как решения экстремальных задач могут быть не единственным элементом пространства, а состоять из множества таких элементов, которое может оказаться и пустым. Тем не менее удалось сформулировать и доказать законы больших чисел для средних величин, определенных указанным образом, т.е. установить сходимость эмпирических средних к теоретическим .

Оказалось, что методы доказательства законов больших чисел допускают существенно более широкую область применения, чем та, для которой они были разработаны. А именно, удалось изучить асимптотику решений экстремальных статистических задач, к которым, как известно, сводится большинство постановок прикладной статистики [26]. В частности, кроме законов больших чисел установлена и состоятельность оценок минимального контраста, в том числе оценок максимального правдоподобия и робастных оценок. К настоящему времени подобные оценки изучены также и в интервальной статистике.

В статистике в пространствах произвольной природы большую роль играют непараметрические оценки плотности, используемые, в частности, в различных алгоритмах регрессионного, дискриминантного, кластерного анализов. В нечисловой статистике предложен и изучен ряд типов непараметрических оценок плотности в пространствах произвольной природы, в частности, доказана их состоятельность, изучена скорость сходимости и установлен примечательный факт совпадения наилучшей скорости сходимости в произвольном случае с той, которая имеет быть в классической теории для числовых случайных величин.

Дискриминантный, кластерный, регрессионный анализы в пространствах произвольной природы основаны либо на параметрической теории - и тогда применяется подход, связанный с асимптотикой решения экстремальных статистических задач - либо на непараметрической теории - и тогда используются алгоритмы на основе непараметрических оценок плотности.

Для проверки гипотез могут быть использованы статистики интегрального типа, в частности, типа омега-квадрат. Любопытно, что предельная теория таких статистик, построенная первоначально в классической постановке [76], приобрела естественный (завершенный, изящный) вид именно для пространств произвольного вида [77], поскольку при этом удалось провести рассуждения, опираясь на базовые математические соотношения, а не на те частные (с общей точки зрения), что были связаны с конечномерным пространством.

Представляют интерес результаты, связанные с конкретными областями статистики объектов нечисловой природы, в частности, со статистикой нечетких множеств [78], со случайными множествами [35] (следует отметить, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств [35,78]), с непараметрической теорией парных сравнений [72], с аксиоматическим введением метрик в конкретных пространствах объектов нечисловой природы [71].

Для анализа нечисловых, в частности, экспертных данных весьма важны методы классификации. С другой стороны, наиболее естественно ставить и решать задачи классификации, основанные на использовании расстояний или показателей различия, в рамках статистики объектов нечисловой природы. Это касается как распознавания образов с учителем (другими словами, дискриминантного анализа), так и распознавания образов без учителя (т.е. кластерного анализа). Современное состояние дискриминантного и кластерного анализа с точки зрения статистики объектов нечисловой природы отражено работах в [79].

Статистические методы анализа нечисловых данных особенно хорошо приспособлены для применения в экономике, социологии и экспертных оценках, поскольку в этих областях от 50% до 90% данных являются нечисловыми [80].

11. Заключение

Мы рассмотрели пять "точек роста" прикладной статистики как методической дисциплины. Разумеется, они не исчерпывают все многообразие фронта научных исследований в этой области. В частности, решены отнюдь не все проблемы, поставленные в конце 70-х годов в т.н. "цахкадзорской тетради" [81]. Кроме того, мы почти не затрагивали разнообразные применения статистических методов в конкретных прикладных областях. Много интересных проблем есть в планировании экспериментов, особенно кинетических (см., например, статьи [2,82]), при анализе проблем надежности (см., в частности, статью [83]), в новых статистических методах управления качеством продукции, в том числе в связи с идеями Г.Тагути (см. об этом статью [84]), в вопросах экологии и безопасности [75], и др.

В течение последних более чем 60 лет в России наблюдается огромный разрыв между государственной статистикой и научным сообществом специалистов по статистическим методам (подробнее об этом см.[19]). В учебнике по истории статистики [14] даже не упоминаются имена членов-корреспондентов АН СССР Н.В.Смирнова и Л.Н.Большева! Поэтому нет ничего удивительного в том, что тенденции развития современной прикладной математической статистики столь же мало обсуждаются отечественными авторами, как и ее история. Буду рад, если настоящая статья положит начало дискуссии о будущем нашей науки.

ЛИТЕРАТУРА

1. Орлов А.И. / Вестник статистики. 1986, № 8. С.52 - 56

2. Горский В.Г. - В сб.: Международная школа повышения квалификации "Инженерно-химическая наука для передовых технологий". Труды третьей сессии, 26-30 мая 1997. Казань, Россия / Под ред. В.А.Махлина. - М.: Научно-Исследовательский Физико-Химический Институт им.Карпова, 1997. С.261-293.

3. Гуда А.Н. Модели, методы и средства анализа данных в затрудненных условиях. Автореф. дисс. докт. технич. наук. - Таганрог: Таганрогский государственный радиотехнический университет, 1997. 38 с.

4. Налимов В.В. Применение математической статистики при анализе вещества. - М.: Физматгиз, 1960. - 430 с.

5. Налимов В.В., Чернова Н.Л. Статистические методы планирования экстремальных экспериментов. - М.: Физматгиз, 1965. - 340 с.

6. Налимов В.В. Канатоходец. Воспоминания. - М.: Издательская группа "Прогресс", 1994. - 456 с.

7. Гнеденко Б.В., Орлов А.И. / Заводская лаборатория. 1988. Т.54. № 1. С.1-4.

8. Горский В.Г. / Заводская лаборатория. 1992. Т.58. № 1. С.63-64.

9. Орлов А.И. / Заводская лаборатория. 1992. Т.58. № 1. С.67-74.

10. Комаров Д.М., Орлов А.И. - В сб.: Вопросы применения экспертных систем. - Минск: Центросистем, 1988. С.151-160.

11. Ленин В.И. Развитие капитализма в России. Процесс образования внутреннего рынка для крупной промышленности. - М.: Политиздат, 1986. - XII, 610 с.

12. Гнеденко Б.В. Курс теории вероятностей: Учебник. - Изд. 6-е,

перераб. и доп. - М.: Наука, Гл. ред. физ.-мат. лит., 1988. - 448 с.

13. Клейн Ф. Лекции о развитии математики в 19 столетии. Часть I. - М.

-Л.: Объединенное научно-техническое издательство НКТП СССР, 1937. - 432 с.

14. Плошко Б.Г., Елисеева И.И. История статистики: Учеб. пособие. - М.:

Финансы и статистика. 1990. - 295 с.

15. Гнеденко Б.В. Математическая статистика и контроль качества. - М.: Знание, 1976. - 64 с.

16. Орлов А.И. / Заводская лаборатория. 1997. Т.63. № 3. С.55-62.

17. Бернштейн С.Н. В сб.: Труды Всероссийского съезда математиков в Москве 27 апреля - 4 мая 1927 г. - М.-Л.: ГИЗ, 1928. С.50-63.

18. Орлов А.И. / Надежность и контроль качества. 1987. № 6. С. 54-59.

19. Орлов А.И. / Вестник статистики. 1990, № 1. С.65 - 71.

20. Кендалл М., Стьюарт А. Теория распределений. - М.: Наука, 1966. 566 с.

20. Кендалл М., Стьюарт А. Статистические выводы и связи. - М.: Наука, 1973. 899 с.

20. Кендалл


29-04-2015, 01:57


Страницы: 1 2 3
Разделы сайта