Задающий генератор выполнен в виде прямого тонового генератора с дискретно регулируемой RC-цепочкой в цепи положительной обратной связи.
Для предотвращения возможного срыва генерации в цепи отрицательной обратной связи установлен управляемый значением выходного напряжения источник тока.
Блок оконечного усилителя выполнен по линейной бестрансформаторной схеме. Для увеличения выходной мощности и к.п.д. оконечного каскада,последний выполнен на полевых транзисторах высокой мощности по двухтактной двухступенчатой схеме класса А. Так как к данному блоку предъявляются не слишком высокие требования в области внесения искажений (коэффициент гармоник допустим в пределах 3-5 %), то коррекция в цепи отрицательной обратной связи ограничена введением местных ООС на каждом каскаде усиления.
Установка УМП-159-006 состоит из блока управления и соединяемого с ним внешнего индуктора с сердечником, врезаемого в трубопровод. Поток жидкости обрабатывается переменным магнитным полем, направленным поперек потока. Форма изменения напряженности магнитного поля- синусоида. Индуктор соединяется с блоком управления двухжильным кабелем (рис. 4). Индуктор состоит из магнитопровода, изготовленного из трансформаторного железа, между полюсами которого помещается труба из стеклопластика (рис. 5).
а) |
б) |
Рис. 4- Электромагнитная установка УМП-159:
а) блок управления; б) индуктор установки
1- сердечник (внутренняя часть магнитопровода), 2- труба из немагнитного материала,
3 - обмотка, 4 - торцевая часть магнитопровода, 5 - внешняя часть магнитопровода.
Рис. 5 - Конструктивные элементы индуктора:
Внутри трубы помещается сердечник из трансформаторного железа. Возбуждение магнитного поля в контуре производиться обмоткой из медного провода диаметром 0,6 мм в 1200 витков. Блок управления состоит из генератора гармонических колебаний с фиксированными частотами, усилителя мощности и батареи конденсаторов, которая последовательно соединяется с индуктором (блок-схема установки УМП-159-006 на рис. 6).
1 - генератор, 2 - усилитель мощности, 3 - батарея конденсаторов, 4 - индуктор,
5- амперметр.
Рис. 6 - Блок-схема установки УМП-159-006:
Технические характеристики УМП-159-006:
1. Установка позволяет создавать магнитные поля дискретно на частотах 11, 15, 19, 23,27, 31 Гц.
2. Индуктор обеспечивает создание магнитного поля в кольцевом зазоре размером 35 мм между внутренним и внешним магнитопроводами.
3. Постоянная установки по току возбуждения: 26 мТл/А.
4. Погрешность частоты не превышает 0,5 Гц.
5. Максимальное значение напряжения на выходе усилителя мощности 65 В, максимально допустимый ток 6 А кратковременно.
6. Питание: 220 В, 50 Гц.
7. Температура окружающего воздуха для блока управления и индуктора - -10 - +30 ¦С.
Установка УМП-325-005 состоит из блока управления, расположенного в металлическом корпусе с замком и соединяемого с ним внешнего индуктора с сердечником, врезаемого в трубопровод. Поток жидкости обрабатывается переменным магнитным полем с импульсным изменением напряженности, направленным поперек потока. Индуктор соединяется с блоком управления кабелем (рис. 7).
а)
б)
Рисунок 7- Электромагнитная установка УМП-325-005:
а) блок управления; б) индуктор установки
Индуктор (схема конструкции представлена на рис. (8) состоит из центрального магнитопровода 1, на который навита обмотка 2, боковых магнитопроводов 3 и магнитопровода 4, примыкающего к внутренней стенке трубы 5.
Рис. 8- Схема конструкции индуктора магнитной установки УМП
Технические характеристики установки УМП-325-005:
Диаметр проходного канала, мм | 100 |
Площадь перекрываемого сечения, мм2 | 7850 |
Величина магнитной индукции, Тл | 0,1 |
Частота изменения переменного магнитного поля, Гц | 10 - 100 |
Дискретность регулировки частоты магнитного поля, Гц | 10 |
Максимальная мощность установки, кВт | 0,3 |
Максимальная температура перекачиваемой жидкости, о С | 100 |
Максимальное давление перекачиваемой жидкости, МПа | до 6,4 |
Тип присоединения к трубопроводу | Фланцевое по ГОСТ 12821-80 |
Электромагнит индуктора расположен непосредственно в потоке обрабатываемой жидкости, и может создавать незначительные гидравлические сопротивления.
Блок управления установки предназначен для эксплуатации в закрытых помещениях с температурой от -20 до +500 С. (при температуре окружающего воздуха ниже-100 С необходимо закрыть вентиляционные отверстия металлического корпуса установки). Индуктор устанавливается на открытом воздухе (допускается заглубление) при температурах от-50 до +500 С. (при условии, что перекачиваемая жидкость имеет температуру 10..800 С). Так как индуктор имеет значительную массу, запрещается его установка в подвешенном состоянии. Токоввод на индукторе должен находиться в вертикальном положении. Токоввод залит для герметизации полимерной композицией.
При установке индуктор подключается высоковольтным бронированным кабелем РПШ-2х2,5 длиной до 100 метров к блоку управления при отключенном питании установки. Сечение каждой жилы кабеля определяется по табл. 4.
Таблица 4
Зависимость сечения кабеля от расстояния индукторvблок управления
Расстояние от индуктора до блока управления, метров | Сечение каждой жилы кабеля, мм2 |
1-10 | 3 |
10-25 | 4 |
25-50 | 6 |
50-100 | 8 |
Установка питается от трехфазной четырехпроводной электрической сети (подключается идущим в комплекте кабелем РПШ-4х2,5). Хотя работоспособность сохраняется и при питании от однофазной сети, подобный режим работы ведет к перегреву цепей гальванической развязки и выходу установки из строя.
Техническая характеристика индуктора
Индуктор электромагнитной установки с изменяемыми параметрами должен соответствовать следующим требованиям:
1 Основные параметры и размеры
1.1 Тип- электромагнитный;
1.2 Исполнение взрывозащиты 2ExsIIaT4 по ГОСТ 12.1.020-76;
1) уровень защиты - 2 (электрооборудование повышенной надежности против взрыва);
2) вид исполнения защиты "m" (заливка компаундом);
3) категория смеси "IIa" (БЭМЗ>0,9мм);
4) группа смеси "Т3" (температура самовоспламенения 200-3000 С);
1.3 Область применения - обработка потоков жидкостей.
1.4 Место установки - трубопроводы систем нефтесбора и поддержания пластового давления.
1.5 Максимальное давление перекачиваемой жидкости в трубопроводе, МПа- 1,6;
1.6 Скорость движения перекачиваемой жидкости до 1,1 м/с,
1.7 Плотность перекачиваемой жидкости до 970 кг/м3 .
1.8 Вид климатического исполнения -Хл по ГОСТ15150-69.
1.9 Температура перекачиваемой жидкости - до 20 10 о С;
1.10 рН перекачиваемой жидкости- 4,0 - 9,5;
1.11 Присоединение - фланцевое;
1.12 Ориентировочные размеры в соответствии с рис. 8.
1.13 Величина магнитной индукции - максимальное - 0,1 Т;
- минимальное - 0,001 Т ;
1.14 Частота переменного магнитного поля - от 10 до 50 Гц;
1.15 Форма изменения напряженности магнитного поля- импульсная, затухающая.
1.16 Максимальная мощность установки- 2100 Вт;
1.17 Напряжение питания установки - 220 В 10 % (38010 %)
1.18 Частота тока питания установки - 50 Гц 10 %;
1.19 Число витков намагничивающей катушки- 200.
1.20 Сечение медного провода- мин. 12 мм2 .
1.21 Пиковое значение тока- 37 А.
1.22 Среднее значение тока - 2 А
4. Сравнительный анализ электромагнитных установок УМП
Разработаные электромагнитные установки УМП (ТУ 39-80400-008-99), которые отличаются различным исполнением индуктора и управляющей станции. Рассмотрим задачу анализа установок УМП по их техническим характеристикам и параметрам с использованием теории нечетких множеств. Основные технические характеристики, параметры трудоемкости и металлоемкости изготовления установок представлены в табл. 5. и 6.
Таблица 5.
Технические характеристики и параметры установок УМП
Марка УМП Параметры установок УМП |
УМП-108 | УМП-159 | УМП-325 |
1 Условный диаметр трубы, мм | 108 | 159 | 325 |
2 Перекрытие проходного сечения, % | 50 | 10 | 10 |
3 Давление перекачиваемой жидкости, МПа | 6,4 | 1,0 | 1,0 |
4 Длина индуктора, мм | 700 | 1200 | 1400 |
5 Масса индуктора, кг | 40 | 60 | 900 |
6 Регулируемая величина магнитной индукции, Т |
0-0,13 | 0-0,10 | 0-0,06 |
7 Изменение режимов | Дискрет. | Дискрет. | Плавное |
8 Рабочая частота, Гц | 10-100 | 10-30 | 10-60 |
9 Форма изменения сигнала | |||
9.1 Синусоидальная | Есть | Есть | Есть |
9.2 Импульсный режим | Нет | Нет | Есть |
10 Наличие компенсатора | Не треб. | Необходим | Не треб. |
Таблица 6
Трудоемкость и металлоемкость изготовления установок УМП
Параметры установок УМП | УМП-108 | УМП-159 | УМП-325 |
1 Трудоемкость индуктора, час | 85 | 40 | 785 |
2 Трудоемкость станции управления, час | 215 | 215 | 230 |
3 Материалоемкость индуктора, тыс. руб. | |||
3.1 Нержавеющая сталь | 1600 | нет | 3200 |
3.2 Электротехническая сталь | 200 | 200 | 32000 |
3.3 Конструкционная сталь | 100 | 150 | 6000 |
3.4 Обмотка | 100 | 300 | 6000 |
3.5 Антикоррозионная композиция | 50 | 600 | 2100 |
3.6 Полимерные материалы | нет | 300 | 2700 |
4 Материалоемкость станции управления, тыс. руб. |
4500 | 4500 | 6000 |
5 Приспособления, тыс. руб. | нет | 500 | 5200 |
Суммарные вероятности альтернатив
А1(УМП-108) | А2 (УМП-159) | А3 (УМП-325) |
0,9300 | 1,2000 | 0,9048 |
По сравниваемым параметрам лучшей установкой является УМП-159, так как имеет наибольшую суммарную вероятность принадлежности.
5. Обоснование совместного использования деэмульгаторов с установками магнитной обработки
При испытаниях деэмульгаторов на Ватьеганском месторождении получены данные по деэмульгирующему эффекту (табл. 7).
Таблица 7
Эффективность применения деэмульгаторов
Деэмульгатор | Без магнитной обработки |
Форма изменения напряженности магнитного поля при магнитной обработке | |||
треугольная | прямоугольная | синусои-дальная | импульсная | ||
ХПД-005 | 55,0 | 70,5 | 68,9 | 68,7 | 78,9 |
СТХ-2 | 58,8 | 58,8 | 61,2 | 67,4 | 70,2 |
СТХ-5 | 52,9 | 54,1 | 64,2 | 64,2 | 70,5 |
Союз-А | 66,1 | 70,0 | 75,6 | 75,6 | 89,5 |
Анализировались эмульсии с обводненностью 68 %. Лабораторные испытания проводились без магнитной обработки и при обработке магнитным полем, напряженность во времени изменялась знакопеременно по закону треугольника, прямоугольника, синусоидально, импульсно. Дозировка деэмульгатора v 40 мг/л.
Проанализируем эффективность использования различных деэмульгаторов, используя статистические методы теории принятия решений. По оптимистичному критерию, выбрав максимальные значения по строкам (78,5; 70,2; 70,5; 89,5) лучшее значение имеет деэмульгатор Союз-А.
По пессимистическому критерию Вальда лучшим из деэмульгаторов считается тот, у которого деэмульгирующий эффект из всех минимальных по строкам значений максимален. Выберем по строкам минимальные значения (55,0; 58,8; 52,9; 66,1). Лучшим также является деэмульгатор Союз-А.
Отойдем от крайних оптимистичных и крайних пессимистичных значений, используя критерий Гурвица. Для его использования необходимо выбрать величину 1£ С £0. При С=1 это критерий "пессимизма" Вальда, а при С=0 это критерий крайнего пессимизма. Для нашей задачи примем С=0,6. Рассчитаем значения критерия для каждой строки:
ZHW1 = 0,6 х 55,0 +(1-0,6) х78,9=64,56
ZHW2 = 0,6 х 55,8 +(1-0,6) х70,2=61,56
ZHW3 = 0,6 х 52,9 +(1-0,6) х70,5=59,94
ZHW4 = 0,6 х 66,1 +(1-0,6) х89,5=72,4
Лучшим также остается деэмульгатор Союз-А. Далее воспользуемся критерием Севиджа, который позволяет выбрать деэмульгатор с наименьшим риском в самой неблагоприятной ситуации.
Выберем в каждом столбце максимальное значение max(eij ). Составим разницу max(eij )-eij =rij . Эта разность является риском при использовании деэмульгатора по определенной технологии. Построим матрицу рисков (табл. 8).
Выберем в каждой строке максимальное значение (11,1; 19,7; 19,0; 0,05). Минимальное значение риска присуще деэмульгатору Союз-А. На втором месте находится деэмульгатор ХПД-005. Риск при использовании деэмульгаторов СТХ значительно выше. Таким образом, можно заключить, что при выборе деэмульгатора предпочтение по деэмульгирующему эффекту имеют
Таблица 8
Матрица рисков
Деэмульгатор | Без магнитной обработки |
Форма изменения напряженности магнитного поля при магнитной обработке | |||
Треугольная | Прямоугольная | Синусоидальная | Импульсная | ||
ХПД-005 | 11,1 | 0 | 6,7 | 6,9 | 10,6 |
СТХ-2 | 7,3 | 11,7 | 14,4 | 8,2 | 19,3 |
СТХ-5 | 13,2 | 16,4 | 11,4 | 11,4 | 19 |
Союз-А | 0 | 0,05 | 0 | 0 | 0 |
реагенты Союз-А и ХПД-005. Окончательное решение о выборе приемлемого деэмульгатора следует принять, анализируя химреагенты по всему комплексу показателей, хотя основными остаются деэмульгирующая способность и стоимость.
Анализируемые деэмульгаторы наиболее эффективно будут работать совместно с магнитной обработкой. Причем предпочтительно импульсное изменение напряженности магнитного поля. Проанализируем влияние формы изменения напряженности магнитного поля (треугольное, прямоугольное, синусоидальное) на эффективность действия деэмульгаторов. Для этого из матрицы табл. 8 исключим столбцы 2 и 6 и получим новую матрицу (табл. 9).
Таблица 9
Эффективность применения деэмульгаторов
Деэмульгатор | Форма изменения напряженности | ||
Треугольная | Прямоугольная | Синусоидальная | |
ХПД-005 | 70,5 | 68,9 | 68,7 |
СТХ-2 | 58,8 | 61,2 | 67,4 |
СТХ-5 | 54,1 | 64,2 | 64,2 |
Союз-А | 70,0 | 75,6 | 75,6 |
Анализируя матрицу по критерию Вальда, (54,1; 61,2; 64,2) мы видим, что незначительное преимущество имеет синусоидальная форма изменения напряженности магнитного поля. По "оптимистичному" критерию, (70,5; 75,6; 75,6) несколько лучшие значения имеют прямоугольная и синусоидальная форма изменения сигнала напряженности магнитного поля.
По критерию Гурвица, (60,8; 67,0; 68,8), рассчитанному при С=0,6, также небольшое преимущество имеет синусоидальная форма изменения напряженности.
Используя критерий Севиджа, (8,6; 6,2; 1,8) мы видим, что риск использования синусоидальной формы изменения напряженности магнитного поля существенно ниже, хотя и для остальных режимов магнитной обработки риск тоже невелик.
Таким образом, с использованием методов теории принятия решений были выбраны марки наиболее приемлемых деэмульгаторов (Союз-А и ХПД-005), а также оптимальный режим магнитной обработки v магнитное поле с импульсной и синусоидальной формой изменения напряженности.
6 Результаты внедрения аппаратов магнитной обработки
Установка УМП-108-014 внедрена на Вятской площади Арланского месторождения. Установка УМП- 159 внедрена в НГДУ "Уфанефть".
В цехе ППН Ватъеганского месторождения смонтированы две установки магнитной обработки жидкости УМП-325-005 в соответствии с ТУ 39-80400-007-99. Монтаж индукторов произведен на параллельных байпасных линиях одного из двух сырьевых трубопроводов (рис. 9).
Рис. 9. Схема монтажа установок для обработки электромагнитным полем на ЦППН Ватьеганского месторождения
Магнитным полем обрабатывается водонефтяная эмульсия входящая в цех ППН. Подача деэмульгатора производится после магнитной обработки в общий поток. Установка позволяет снизить расход деэмульгатора на 10-20 %.
Список литературы
1. Антипин Ю.В., Валеев М.Д., Сыртланов А.Ш. Предотвращение осложнений при добыче обводненной нефти. - Уфа: Башк. кн. изд-во, 1987. v 168 с.
2. Позднышев Г.Н. Стабилизация и разрушение эмульсий. v М.: Недра, 1982. v 222 с.
3. Разработка нефтяных месторождений: В 4 т. / Акад. естеств. наук. нефт. компания ЮКОС "АО "Юганскнефтегаз" НПФ "Нефтегазсервис": Под ред. Н. И. Хисамутдинова, Г.З. Ибрагимова // Сбор и подготовка промысловой продукции. v М.: ВНИИОЭНГ, 1994. - Т. 3. v 149 с.
4. Смирнов Ю.С., Мелошенко Н.Т. Химическое деэмульгирование нефти как основа ее промысловой подготовки //Нефтяное хозяйство. v 1989. - ¦ 8. v С. 46-50.
5. Персиянцев М.Н., Гришагин А.В., Андреев В.В., Рябин А.Н. О влиянии свойств нефтей на качество сбрасываемой воды при предварительном обезвоживании продукции скважин // Нефтяное хозяйство. v 1999. - ¦ 3. v С. 47-49.
6. Ребиндер П.А., Поспелова К.А. Вступительная статья к книге Клейтона "Эмульсии", ИЛ, 1950
7. Каплан Л.С. Особенности эксплуатации обводнившихся скважин погружными центробежными насосами. v М.: ВНИИОЭНГ, 1980. v 77 с.
8. Мамедов А.М., Аббасов З.Я., Нагиев А.И. и др. Особенности эмульгирования водонефтяной смеси газом // РНТС ВНИИОЭНГ, сер. Нефтепромысловое дело, 1973. - ¦ 4. v С. 17-19
9. Муравьев И.М., Ибрагимов Г.З. Влияние газовой фазы на образование водонефтяных эмульсий // Нефть и газ. v 1967. -¦ 11. v с. 17-19
10. Гловацкий Е.А. Влияние промежуточного слоя на эффективность обезвоживания нефти в резервуарах //Тр. СибНИИНП, 1980. v Тюмень. -Вып. 17. v С. 104-107.
11. Гловацкий Е.А., Черепние В.В. Экспериментальное исследование процесса разделения водонефтяных эмульсий в аппаратах отстойниках //Тр. СибНИИНП, 1981. v Тюмень. -Вып. 22. v С. 70-76.
12. Звегинцев И.Ф., Бывальцев В.П. Применение способа холодной деэмульсации при предварительном сбросе пластовой воды // Сб.: Совершенствование методов подготовки нефти на промыслах Татарии. -Бугульма, 1980. v С. 62-64.
13. Лапига Е.Я., Логинов В.И. Учет процесса коалесценции капель при определении передаточных функций отстойных аппаратов //Нефть и газ. v 1981. - ¦ 6. v С. 51-55.
14. Маринин Н.С., Гловацкий Е.А., Скипин В.С. Подготовка нефти и сточных вод на Самотлорском месторождении //Обзорная инф. ВНИИОЭНГ, сер. Нефтепромысловое дело. v 1981. -Вып. 18. v 39 с.
15. Тронов В.П., Ахмадеев Г.М., Саттаров У.Г. Развитие техники и технологии промысловой подготовки нефти в Татарии // Сб.: Совершенствование методов подготовки нефти на промыслах Татарии. -Бугульма, 1980. v С. 13-34.
16. Шарипов И.М., Фассахов Р.Х., Лазарев Д.П. Обессоливание и сдача нефти в режиме динамического отстоя // Сб.: Совершенствование методов подготовки нефти на промыслах Татарии. -Бугульма, 1980. v С. 57-61.
17. Еремин И.Н. Исследование и разработка отстойников для подготовки нефти // Тр. ВНИИСПТнефть, Уфа. v 1980. v С. 81-88.
18. Еремин И.Н., Мансуров Р.И., Пелевин Л.А., Алпатов Г.К., Приписнов А.С. Исследование гидродинамических характеристик базовых отстойников с применением радиоактивного изотопа //Нефтепромысловое дело. v 1980. - ¦ 4. v С. 35-37.
19. А. с. ¦ 889093 СССР. Отстойник для разрушения эмульсий /Р.И. Мансуров, И.Н. Еремин, Т.Г. Скрябина, Н.С. Маринин, Ю.Д. Малясов, Н.М. Байков //Б.И. v 1981. - ¦ 46.
20. А. с. ¦ 1143764 СССР. Устройство для регулирования процесса обезвоживания нефти /Р.И. Мансуров, Ю.М. Абызгильдин, И.Н. Еремин, Н.А. Яковлева, В.Л. Беляков //Б.И. v 1985. - ¦ 9.
21. Еремин И.Н. Интенсификация обезвоживания нефтяных эмульсий. Автореф. дисс. канд. техн. наук. v Уфа, Ротапринт ВНИИСПТнефти.- 1985.
22. А.с. ¦ 98100984 РФ. Деэмульгирующие композиции для обезвоживания и обессоливания водонефтяных эмульсий /В.Е. Сомов, Г.Д. Залищевский и др. //Б.И. v 1998. - ¦ 1.
23. А.с. ¦ 98100986 РФ. Состав для обезвоживания и обессоливания нефтяных эмульсий / В.Е. Сомов, Г.Д. Залищевский и др. //Б.И. v 1998. - ¦ 1.
24. Пат. ¦ 2125081 РФ. Способ обезвоживания нефти / В.Ф. Лесничий, В.П. Баженов и др.// Б.И. v 1997. - ¦ 5.
25. А.с. ¦ 97100210 РФ. Состав для обезвоживания и обессоливания нефти/ А.И. Орехов, А.З. Габдулханова, И.И. Нуруллина, И.Г. Юдина // Б.И. v 1997. - ¦ 1.
26. А.с. ¦ 98103494 РФ. Состав для обезвоживания и обессоливания нефти, обладающий также свойствами ингибитора общей и микробиологической коррозии/ Г.А. Гудрий, Н.И. Рябинина и др.// Б.И. v 1998. - ¦ 3.
27. А.с. ¦ 97101936 РФ. Состав для разрушения водонефтяных эмульсий, ингибирующий асфальто-смоло-парафиновые отложения/ Р.Г. Шакирзянов, В.Н. Хлебников, З.Х Садриев и др.//Б.И. v 1997. - ¦ 2.
28. Гурвич Л.М., Шерстнев Н.М. Многофункциональные композиции ПАВ в технологических операциях нефтедобычи. v М.: ВНИИОЭНГ, 1994. v 226 с.
29. Левченко Д.М., Бергштейн Н.В., Николаева Н.М. Технология обессоливания нефтей на нефтеперерабатывающих предприятиях. v М.: Химия, 1985. v 167 с.
30. Ребиндер П.А. Поверхностные явления в дисперсных системах. Коллоидная химия: Избранные труды. v М.: Наука, 1978. v 365 с.
31. Маринин Н.С., Каган Я.М., Савватеев Ю.Н. и др. Совершенствование технологических схем сбора и подготовки нефти на месторождениях Западной Сибири //Обзорная инф. ВНИИОЭНГ, сер. Нефтепромысловое дело. v 1983. -Вып. 8 (57). - 46 с.
32. Соколов А.Г., Шабаев Е.Ф., Владимиров Ю.Д. Современное состояние и пути совершенствования предварительного обезвоживания нефти // Обзорная инф. ВНИИОЭНГ, сер. Нефтепромысловое дело. v 1984. -Вып. 12 (84). v 56 с.
33. Сидоров С.А., Блоцкий В.Л., Додонов В.Ф., Енгулатова В.П. Испытания. //Химия и технология топлив и масел. v 1996. - ¦ 5. v С. 20.
34. Buhidma A. and Pal R. Flow Measurement of Two-phase Oil-in-water Emulsions using Wedge Meters and Segmental Orifice Meters // Chem. Eng. J., 1996 v N 63. v P. 59-64.
35. Pal R. Techniques for Measuring Composition (Oil and Water Content) of Emulsions // Colloids & Surfaces, 1994. - N 84. v P. 141-193.
29-04-2015, 02:07