Анализ эквивалентной цепи взрыво-магнитного генератора частоты

лайнером, хотя этот виток соединён гальванически с лайнером через соседние витки).

Электрически пробой, если он есть, должен быть вызван каким-то электрическим полем, и здесь мы укажем возможную причину возникновения такого поля, которая не зависит напрямую от напряжения на конденсаторе. Впервые это было высказано Лоренцем в его парадоксе теории Эйншетейна. Лоренц показал, что ток в прямом бесконечно длинном проводе вызывает электрическое поле, направленное перпендикулярно проводу, и это нарушает принцип эквивалентности систем отсчёта. В данной статье мы не будем анализировать этот парадокс, однако, укажем, что были проведены эксперименты по обнаружению такого тока (хороший обзор и экспериментальные данные содержатся в работе [8], недавние результаты по этому вопросу даны в [9]). Причина появления такого электрического поля достаточно прозрачна: эффект вызван разностью между кулоновским полем неподвижных ионов и полем Льенарда v Вихерта движущихся электронов проводимости. Однако, для корректной экспериментальной проверки эффекта требуется выполнение следующих условий:

поддержание в течение достаточно долгого времени (достаточного для измерений) квазистационарного тока в цепи;

электронейтральность и замкнутость цепи, то есть цепь не должна быть подсоединена к внешнему источнику питания. В противном случае, заряды от источника могут пройти в цепь и нарушить распределение электронной плотности, создаваемой квазистационарным током [9].

Поэтому опыты по проверке эффекта возможны лишь для колец со сверхпроводящим током, а для таких объектов возможный эффект очень мал. В то же время оба условия выполняются в ВМГЧ. Поэтому появление Лоренцева электрического поля и, соответственно, пробой возможны в этой системе, особенно, когда изолирующий слой проводов катушки находится в предразрушаемом состоянии и ток в катушке проходит точку экстремума.

Тут может быть задан вопрос: почему такой механизм излучения не реализуется в обычных магнетокумулятивных генераторах (МКГ)? Известно, что в многосекционных МКГ ток может достигать значений до 0.5 МА и представляется, что в таких МКГ условия для возникновения пробоя лучше. Однако, отметим, что в обычных МКГ ток нарастает достаточно медленно в сравнении с ВМГЧ, при этом нарастание тока монотонное. Поэтому если такой пробой происходит, то он единичный и на фоне пробоев в МКГ (известно, что от некоторых МКГ наблюдается слабое рентгеновсое излучение, которое также может быть вызвано ускорением электронов мощным электрическим полем) не заметен. В то же время, условия для пробоя в ВМГЧ могут создаваться столько раз, сколько раз ток в катушке прибора проходит точки максимумов и минимумов, то есть не менее 100 раз. Далее, при вычислении разности кулоновских и льенард-вихертовых полей обычно рассматриваются равномерно движущиеся (на фоне ионов) электроны. Однако, в ВМГЧ электроны колеблются с частотой порядка 10 МГц , то есть ускоряются. Следует ожидать, что член с ускорением вносит определённый вклад в разность кулоновских и льенард-вихертовых полей и условия для пробоя в ВМГЧ более благоприятны, чем для МКГ, в которых ток квазистационарный.

Укажем, что описанный выше механизм пробоя может рассматриваться лишь как гипотеза, и необходима экспериментальныя проверка этой идеи.

Заключение

Поскольку из вычислений, основанных на модели ЭС, следует, что наивысшая частота тока нагрузки для катушки как антенны, не может быть выше 10 МГц, (то есть частота радиоизлучения не может существенно превосходить эту величину, и в то же самое время частота зарегистрированного в тестовых испытаниях радиоизлучения лежит в полосе от 10 до 150 ГГц) то мы вынуждены заключить, что модель ЭС не способна объяснить функционирование прибора. Тут необходимо отметить, что развитая выше модель ЭС имеет следующие недостатки:

При переходе от описания реального прибора к ЭС мы внесли упрощения в описание процесса сжатия магнитного поля. Эффекты, утерянные в ходе такого упрощения, могут быть существенны.

Для частот выше 100 МГц катушка уже не может быть представлена как идеальный соленоид. Более строгое описание требует рассмотрения катушки (как основного узла прибора) как системы с распределёнными параметрами.

Однако, по мнению автора, модель ЭС, даже с учётом двух вышеуказнных пунктов, не способна будет объяснить наличия излучения в полосе от 10 до 150 ГГц, и для корректного объяснения требуется какой-то принципиально иной подход.

Несмотря на то, что модель ЭС не способна описать наличие гегагерцового излучения, генерируемого ВМГЧ, эта модель позволяет описать два новых эффекта, которые, по мнению автора, ранее не были описаны в научной литературе: эффект проникновения магнитного поля сквозь катушку. Для частоты магнитного поля внутри катушки порядка 10 МГц и для геометрических размеров катушки медного провода глубина скин-слоя должна быть не более 0.1 мм, в то время, как толщина слоя металла в катушке в 10 раз больше. То есть, процесс проникновения магнитного поля через катушку не может быть описан в рамках концепции скин-слоя.

Эта система электрически нейтральна, изолирована от внешних источников тока и в то же время в ней поддерживается квазистационарный (по сравнению с эффектами распространения ЭМ полей) ток. Таким образом, в этой системе реализуются на макроскопическом уровне условия для проверки предположения Лоренца о существовании электрического поля, нарушающего эквивалентность систем отсчёта в специальной теории относительности.

Список литературы

Prishchepenko A.B., V.K.. Kiseljov, and L.S. Kudimov., Radio Frequency Weapon at the Future BattleField, Proceedings of the EUROEM Conference, Bordeaux, France, June 1994.,

L. Altgilbers et al., Compact explosive driven sources of microwaves: test results, Proceedings of the Megagauss VIII Conference, Talahassee, USA, October, 1998

V.A.Soshenko and V.C.Ivanov, Investigation of the Parameters of Explosive Driven Magnetic Generators of Frequency, Proceedings of EUROEM Conference, Jerusalem, Izrael, August 1998.

Прищепенко А.Б., Щелкачёв М.В. Диссипативные и диффузионные потери в спиральном взрывомагнитном генераторе. Электричество, ¦ 9, стр. 31-36, 1993.

Кнопфель , Сверхсильные магнитные поля, М. ?Мир¦, 1968. Гл. 4.

Павловский А.И., Людаев Р.З. и др., Многосекционный генератор МК-2, Материалы конференции Мегагаусс III, М. ?Наука¦, 1984, стр. 312-320.

Джеффри Г., Свирлс Б. Методы математической физики, М. ?Мир¦, 1970. Гл 16.

W.F. Edwards, C.S. Kenyon, and D.K. Lemon, Continuing investigation into possible electric fields arising from steady conduction currents, Physical Review D, Vol. 14, No. 4, pp. 922-938, 1976.

L. Baroni, E. Montanari, and A.D. Pesci, Some remarks on the question of charge densities in stationary current-carrying conductors Nuovo Cimento B 109, p. 1275, 1994.




29-04-2015, 02:07

Страницы: 1 2
Разделы сайта