Авторская система TeachLab CourseMaster
А.А. Пугачев, кафедра математики и информатики
Улан-Удэнский филиал Восточно-Сибирского института МВД России,
Улан-Удэ, Россия
Введение
Анализ опыта внедрения в школах, вузах и различных предприятиях, компьютерных программ учебного назначения показывает, что важным фактором, препятствующим их широкому применению, является неполное соответствие предлагаемого материала идеям и методам преподавания той или иной дисциплины. Многие педагоги проявляют значительную осторожность в использовании обучающих программ и педагогических программных средств. Идеальным решением этой проблемы является полный учет требований пользователя (преподавателя), что практически недостижимо. В настоящее время в сфере разработки обучающих и других учебных программ доминируют интересы и предпочтения производителя, то есть программистов-разработчиков компьютерных программ. В печати и на конференциях различного уровня не раз высказывалось мнение, что современному педагогу, скорее нужен не диск с полным мультимедийным курсом по предмету, а некоторые элементарные кирпичики, которые он мог бы использовать в качестве красочных иллюстраций своих идей и методов и которые более органично вписались бы в традицию использования наглядных пособий, подбираемых педагогом для своего занятия.
В связи с этим представляется целесообразным создание не законченной обучающей продукции, а своеобразных электронных конструкторов - инструментальных программных средств (авторских систем) для создания педагогом собственных ЭУК. В настоящее время существует довольно много таких систем, как коммерческих, так и исследовательского уровня, различающихся простотой освоения, предоставляемыми возможностями, стоимостью и т.д. В рамках данной статьи рассмотрена авторская система TeachLab CourseMaster ( http://teachlab.km.ru). Система TeachLab CourseMaster предназначена, в первую очередь, для создания адаптивных электронных учебных курсов.
Основные возможности системы, приведены ниже:
Представление в ЭУК предметных, педагогических и диагностических знаний.
Формирование и поддержка Модели обучаемого.
Адаптация к предметной области.
Адаптация к уровню знаний и умений разработчика электронных курсов
Использование коммуникационного посредника (Ассистента), позволяющего переключить обучаемого из коммуникации "человек-человек" в коммуникацию "человек-компьютер".
Визуальная среда проектирования страниц курса.
Наличие объектно-ориентированного языка программирования (Object Pascal, Visual Basic, JavaScript).
Простые механизмы подключения дополнительных библиотек обучающих компонент и элементов управления ActiveX.
Представление знаний в системе
Система обеспечивает представление в электронном учебном курсе предметных, педагогических и диагностических знаний [Норенков Ю. И., 1993].
К предметным знаниям отнесены: учебный материал, знания, способствующие поиску требуемой информации, и знания о структуре предметной области.
В системе CourseMaster учебный материал представлен в виде страниц учебного курса, которые обладают следующими свойствами:
каждая страница курса имеет атрибуты, назначаемые автором и классифицирующие учебный материал по различным критериям (уровень представления учебного материала, уровень усвоения учебного материала, уровень осознанности [Беспалько В. П., 1977]);
страница курса содержит специальные данные, облегчающие поиск содержащейся в ней информации (метаданные);
страница учебного курса может содержать гиперссылки на другие страницы курса и диагностические знания;
информация на страницах курса может быть представлена в различных формах (текст, графические образы, диаграммы, видео, аудио и т.д.). Конкретное множество допустимых видов информации задается реализацией, т.е. зависит от множества используемых обучающих компонент;
каждый из информационных элементов, составляющих страницу курса, обладает определенными свойствами, которые могут изменяться в ходе процесса обучения.
Множество страниц учебного курса, организованных определенным образом, образуют структуру предметной области HS. Для каждого элемента t HS могут быть определены:
страница учебного курса;
множество диагностических учебных воздействий (пре- и пост-тестирование);
множество педагогических знаний, осуществляющих управление процессом обучения и модификацию модели обучаемого.
Представление педагогических знаний
Для реализации процесса адаптивного обучения необходимо планирование учебных воздействий и корректировка получаемых планов в зависимости от успешности усвоения материала. Оглавление учебного курса (структура предметной области) содержит ссылки на предметные знания и задает отношения между темами учебного материала. Его создание осуществляется разработчиком курса и оно остается неизменным в процессе обучения. Между тем, необходимость индивидуализированного подхода к обучению требует планирования учебных воздействий, как на основании структуры предметных знаний, так и на основании модели конкретного обучаемого.
Управляющий модуль системы целесообразно рассматривать как конечный автомат, который в любой момент времени находится в некотором состоянии. Состояние автомата однозначно определяется значениями его внутренних переменных. Изменение состояния происходит после поступления внешнего воздействия, в данном случае - действия обучаемого. Новое состояние определяется на основании поступившего внешнего воздействия и предыдущего состояния и выбирается в соответствии с функцией перехода, которая задается при помощи продукционных правил.
Таким образом, для представления педагогических знаний в системе реализованы следующие компоненты:
внутренняя память, в которой хранятся значения переменных, и
множества правил-продукций, анализирующих и изменяющих состояние данных переменных.
Для хранения значения внутренних переменных используется Реестр системы - динамическая база данных для хранения неоднородной информации, индивидуальной для каждого обучаемого.
В Реестре выделены следующие подструктуры:
модель обучаемого: уровень знаний, предпочтения и т.д.;
заметки обучаемого;
протокол работы обучаемого с системой, в котором сохраняются сведения о пройденном учебном материале;
информация о состоянии некоторых концептов предметной области и т.д.
Для хранения практически всей указанной информации используются элементы (разбитые на категории, секции) следующего вида:
Атрибут = Значение
где Атрибут - символьный идентификатор элемента Реестра: Значение - значение данного элемента Реестра, принадлежащее к одному из следующих типов: логический (Boolean), целый (Integer), вещественный (Float), строковый (String), поток (Stream), компонент (Component).
Для анализа и модификации содержимого Реестра используются продукционные правила, генерируемые автоматически при проектировании курса или разрабатываемые автором курса.
Каждое продукционное правило имеет следующий формат:
Список условий > Список действий
Список условий правил составляется из операторов используемого языка программирования, в частности, операторов, анализирующих состояние Реестра.
Список действий также составляют операторы текущего языка программирования, в частности, операторы, производящие модификацию Реестра.
Диагностические знания
Диагностические знания содержат сведения о способах и методах контроля знаний, умений и навыков обучаемого (вопросы и упражнения).
В рассматриваемой системе, по способу получения ответа, выделены следующие типы (варианты) контрольных вопросов (упражнений):
упражнения с заданным множеством ответов:
одиночный выбор;
множественный выбор;
ввод с клавиатуры;
область на рисунке;
соответствие;
иерархия;
упражнения с присоединенной процедурой вывода и анализа ответов (свободно-конструируемые вопросы).
Поддержка вопросов с заданным множеством ответов - обязательное условие для любой авторской системы современного уровня. Однако более полно контролировать процессы усвоения знаний, формирования умений и навыков позволяют вопросы с присоединенной процедурой вывода и анализа ответов (свободно конструируемые вопросы).
В чем суть вопросов этого типа? Практика показывает, что гораздо эффективнее, при проверке знаний и умений, вместо вопроса, например, "Как создать новую папку на Рабочем столе Windows?", потребовать - "Используя контекстное меню, создайте папку на Рабочем столе Windows". В этом случае, тестируемый, не выбирает правильный ответ из предложенных вариантов, а выполняет набор действий, который приводит к желаемому результату. Именно такое тестирование и позволяют реализовать свободно конструируемые вопросы.
Вопросы этого типа - наиболее эффективный способ проверки знаний и умений, но платой за эффективность является довольно высокая сложность разработки данных вопросов, связанная с необходимостью знания основ программирования. Однако в будущем, благодаря разработки специализированных компонент (в рамках данного проекта - обучающих компонент), сложность проектирования данных вопросов значительно снизится.
Для вопросов любого типа в системе CourseMaster могут быть определены метаданные, наличие которых позволяет генерировать тесты, индивидуализированные и соответствующие параметрам запроса автора курса или системы, т.е. авторы могут точно определить различные параметры опроса обучаемых, необходимые в некоторой точке учебного курса: общее количество вопросов, пропорцию вопросов специфического вида или специфичных тем, трудность, важность и т.д. В частности, использование метаданных позволило реализовать такую функцию система как "Работа над ошибками".
По способу активации множество диагностических знаний разделено на следующие подмножества:
упражнения, активизируемые в процессе предварительного тестирования (например, при инициализации стереотипной или оверлейной модели пользователя);
упражнения, активизируемые, в результате выполнения некоторого правила;
упражнения, закрепленные за некоторым концептом предметной области и активизируемые до или после его изучения (пре- и пост-тестирование);
упражнения для самоконтроля, активизируемые самим обучаемым в процессе работы с концептом ПО (ссылки на такие упражнения задаются в соответствующем концепте).
Автоматизированное оценивание уровня знаний и умений является в достаточной мере формальной процедурой и его качество напрямую зависит от используемых алгоритмов. Для информирования о результатах обучения и отражения динамики развития обучаемого в системе CourseMaster использован алгоритм, в основу которого положена многозначная логика с векторной семантикой VTF [Аршинский Л. В., 1998, Аршинский Л. В., Пугачев А. А., 2001; Гаврилова, Хорошевский, 2000]. Данный алгоритм обеспечивает:
проведение адаптивного тестирования;
формализованный, однозначный и объективный порядок фиксирования результатов ответов на вопрос;
предоставление возможности дифференцированного подхода к оцениванию результатов ответов на каждый вопрос с учетом его параметров;
возможности распознавания типа ошибки и соответствующего их оценивания;
получение итоговой интегрированной оценки по результатам ответа на все вопросы;
приведение итогового результата к оценке по традиционно используемой шкале;
достаточно простую программную реализацию.
Важным достоинством алгоритма является возможность естественным образом учитывать вес каждого вопроса в тесте. Механизм задания весовых коэффициентов может быть различен. В рассматриваемой системе вес вопроса (упражнения) определяется в соответствии с системой дидактических показателей предложенных В.П. Беспалько [Беспалько В.П., 1977]:
показатели уровня представления учебного материала ( альфа);
показатели уровня усвоения учебного материала ( бета);
показатели качества усвоения (осознанность) ( гамма);
В соответствии с данными показателями вес i-вопроса, определяется выражением
,
где - коэффициенты, определяющие приоритет того или иного показателя, - поправочный коэффициент.
Существенным, в данном подходе, является использование, наряду с понятием вес вопроса, понятия - вес ответа, который определяется как степень соответствия j ответа текущему вопросу, выраженная в процентах или долях единицы.
Итоговый балл, получаемый тестируемым, при выполнении i задания теста определяется выражением:
,
где
t - тип вопроса (в настоящей работе: 0 - "одиночный выбор", 1- "множественный выбор", 2 - "ввод с клавиатуры", 3 - "область на рисунке", 6 - "соответствие" и 4, 5 - "конструктор вопросов");
kij - степень соответствия j ответа содержанию i вопроса;
NF - число ответов выбранных неправильно (для вопросов "множественный выбор" и "соответствие");
NT - число ответов выбранных правильно (для вопросов "множественный выбор" и "соответствие").
Адаптация к предметной области
Адаптация к предметной области позиционирует систему CourseMaster, как совокупность инструментальных средств, на базе которых появляется возможность разработки учебных курсов из различных областей знаний. Технология положенная в основу авторской системы инвариантна к различным предметным областям. Разумеется, инвариантность не следует трактовать в абсолютном смысле. При переходе от одной предметной области к другой отдельные составляющие технологии могут модифицироваться (адаптироваться), однако ядро системы, реализующее общие принципы и механизмы построения электронных учебных курсов, остается неизменным.
Процедуры адаптации к новым предметным областям достаточно гибкие, в результате чего затраты, на настройку системы на новую предметную область, как минимум, на порядок меньше затрат на разработку новой системы "с нуля".
Практической стороной решения этой проблемы явилось:
наличие в системе визуальных средств конструирования и корректировки интерфейса и содержания учебного курса;
наличия широкой палитры обучающих компонент и простых средств их включения в учебный курс.
Процесс конструирования страниц курса аналогичен процессу разработки программ в любой среде визуального программирования, например, Delphi (Рисунок 2): проектирование интерфейса путем манипуляции набором компонент и связывание их с помощью кода на Object Pascal (VBScript или JavaScript).
Набор компонент достаточно обширен (идентичен компонентам Delphi), кроме того, предусмотрена возможность подключения дополнительных компонент и элементов управления ActiveX, для расширения функциональных возможностей программы.
Рис. 3. Подключение компонент и элементов ActiveX.
Решение некоторых типовых задач в системе TeachLab CourseMaster
При разработке электронных учебных курсов естественно возникновение ряда типовых задач и ситуаций. Методы и способы решения некоторых типовых задач рассмотрены ниже.
Объединение вопросов и упражнений в тесты
Тест - объективное и стандартизированное измерение, легко поддающееся количественной оценке, статистической обработке и сравнительному анализу.
Структурно тест представляет собой взаимосвязанный набор из серий заданий равной трудности, направленных на один объект исследования (тему, умение, навык и т.п.).
При проведении тестов с целью итогового контроля, определения общего уровня владения предметом, диагностики знаний возникает задача проверки и оценки знаний, умений и навыков испытуемого по широкому перечню областей, в то время, как каждый конкретный тест обычно направлен на какой-то один объект тестирования. В этом случае применяют так называемые "тестовые батареи". Формально тестовая батарея представляет собой один большой тест, измеряющий сразу несколько характеристик испытуемого.
Структура тестовой батареи определяется структурой предметной области, и для ее формирования разработан механизм, который позволяет из базового набора вопросов и упражнений (тестов) формировать произвольные тестовые батареи.
Для работы с тестовыми батареями, в системе TeachLab CourseMaster можно использовать обучающий компонент TTestButton и/или встроенную функцию.
Обучающий компонент TTestButton. Компонент имеет большое количество настраиваемых свойств, но непосредственно на сеанс тестирования влияют только следующие:
Таблица 2. Свойства обучающего компонента TTestButton .
Свойство | Пример | Описание |
Test3 | 50 | Процентное соотношение набранных баллов к возможному числу баллов для получения оценки "три". |
Test4 | 75 | Процентное соотношение набранных баллов к возможному числу баллов для получения оценки "четыре". |
Test5 | 85 | Процентное соотношение набранных баллов к возможному числу баллов для получения оценки "пять". |
TestCount | 15 | Количество вопросов в сеансе тестирования. |
TestQuery | Tema=0 and Gamma=1 | Строка, определяющая фильтр, по которому будут выбираться вопросы для данного теста (см. следующую таблицу). |
TestTime | 20 | Время для прохождения данного теста в минутах. Если время равно 0, то время не ограничено. |
TestTitle | Основные понятия | Определяет строку для заголовка окна тестирования и переменную, в которой будут сохранены результаты тестирования в Модели пользователя. |
Наиболее существенным является свойство TestQuery, определяющее фильтр, по которому будут выбираться вопросы для данной тестовой батареи.
Таблица 3. Параметры фильтра.
Переменная | Алиас | Диапазон значений | Описание |
Tema | Тема | 0..N | Включить в тестовую батарею вопросы только по указанной теме тестирования. N - число тем. |
Alfa | Уровень усвоения | 0..2 | Включить в тестовую батарею вопросы только указанного уровня усвоения учебного материала. |
Beta | Уровень представления | 0..3 | Включить в тестовую батарею вопросы только указанного уровня научности учебного материала. |
Gamma | Уровень осознанности | 0..2 | Включить в тестовую батарею вопросы только указанного уровня осознанности. |
TypeQuest | Тип вопроса | 0..6 | Включить в тестовую батарею вопросы только указанного типа. |
Page | Страница курса | 0..M | Включить в тестовую батарею только вопросы, соответствующие определенной странице учебного курса. M - число страниц учебного курса. |
Impotent | Важность | 0..2 | Включить в тестовую батарею только вопросы определенной степени важности. |
Настройка данного свойства осуществляется с помощью визуального построителя запросов.
Рисунок 5. Настройка фильтра.
Обеспечение интеграции учебных курсов
Практически в каждой учебной дисциплине может потребоваться наличие знаний из другой дисциплины, т.е. при изучении тем одного учебного курса могут потребоваться сведения из другого.
Физическое объединение всех необходимых знаний в рамках одного учебного курса неизбежно приведет к их дублированию, и, как следствие, к увеличению сроков и стоимости разработки и сопровождения. Кроме того, такое объединение может оказаться неэффективным ввиду быстрого изменения самих предметных знаний.
В связи с этим обязательное свойство современной обучающей системы - возможность интеграции информации из различных учебных курсов и внешних источников (файлы на жестком диске, данные Intranet и Internet).
Для решения проблем, связанных с интеграцией знаний, в системе TeachLab CourseMaster можно использовать обучающий компонент TMHotSpot и/или встроенные функции.
Использование компонента TMHotSpot. Компонент TMHotSpot имеет большое количество настраиваемых свойств, но наиболее существенными, для решения проблемы интеграции знаний, являются следующие:
Таблица 4. Свойства обучающего компонента TMHotSpot.
Свойство | Пример | Описание |
HotSpotType | hstInternet | Значение данного свойства определяет способ организации перехода: - hstMainWnd - при активизации гиперссылки новая страница замещает текущую в главном окне программы; - hstPopUp - при активизации гиперссылки новая страница открывается в дополнительном окне; - hstInternet - при активации гиперссылки запускается браузер (например, IE) и открывается указанная страница; - hstCourse - при активации гиперссылки запускается копия Проигрывателя курсов и открывается курс, указанный в свойстве - PageName (без повторной регистрации пользователя); - hstCustom (только для опытных разработчиков) - при активизации гиперссылки вызывается событие OnClick данного компонента. |
PageName | http://teachlab.km.ru | Имя страницы для перехода |
PopUpModal | False | Определяет, будет ли дополнительное окно модальным (PopUpModal=True) или нет (PopUpModal=False) |
PopUpHeight | 400 | Определяет высоту дополнительного окна |
PopUpWidth | 600 | Определяет ширину дополнительного окна |
В результате использования данного компонента создается гиперссылка на определенную страницу курса (другой курс, сайт и т.д.). Для пользователя активизация такой ссылки означает переход между страницами курса, от одного учебного курса к другому и т.д., с обеспечением возможности возврата и сохранения состояния динамической модели обучаемого.
Число учебных электронных курсов, доступных для одновременной работы, ограничено только аппаратными возможностями используемого ПК.
Применение педагогических агентов
Стремительный рост масштабов создания и практического использования обучающих программных средств сопровождается расширением исследований, направленных на поиск новых эффективных форм представления учебной информации и способов взаимодействия учащихся с образовательной средой. Одним из современных и перспективных способов организации диалога пользователя с компьютером является применение интерфейсных агентов - анимированных персонажей, присутствие которых на экране монитора делает общение с программой более человечным.
Интерфейсных агентов, действующих в образовательных программных средах, называют педагогическими агентами. Исследования показали, что взаимодействие обучаемых с педагогическими агентами усиливает мотивацию, активизирует восприятие информации и укрепляет доверие к получаемым сообщениям, а это все в совокупности, в свою очередь, повышает эффективность образовательных программных средств.
Перечисленные достоинства педагогических агентов послужили основанием для включения в авторскую систему TeachLab CourseMaster поддержки педагогических агентов.
В настоящее время можно выделить три технологических варианта реализации
10-09-2015, 02:22