Перейдем к центральной нервной системе, включающей спинной и головной мозг. Спинной мозг возникает в эволюции как самостоятельный модуль, управляющий функционированием организма и многими сторонами поведения, но по мере перехода от примитивных к более эволюционно продвинутым позвоночным животным (птицам, млекопитающим) все более приобретает статус структуры, иерархически подчиненной головному мозгу, проводящей идущие от него команды к различным участкам тела. Серое вещество спинного мозга самостоятельно отвечает только за некоторые простые (сегментарные) рефлексы, например, коленный (удар молоточком по сухожилию голени вызывает разгибание коленного сустава). Учащиеся старших классов средней школы до недавнего времени (может быть, ва некоторых школах и по сей день?) изучали работу спинного мозга на нежелательной с биоэтической точки зрения (о биоэтике см. ниже – 7.4.) модели: обезглавленной лягушке, которая способна сгибать лапку, если эту лапку ущипнуть или опустить в кислоту.
Актуальная проблема с биоэтическим и биополитическим звучанием касается ситуаций, когда человек уподобляется обезглавленной лягушке. Несмотря на то, что спинной мозг находится под контролем головного и вспадает в состояние торможения (спинномозговой, или спинальный, шок) при нефункционировании головного мозга, с течением времени шок проходит и спинной мозг берет на себя контроль некоторых функций организма. Поэтому, например, сердце продолжает биться у индивидов в состоянии запредельной комы (смерть головного мозга ). К настоящему времени указанное состояние достоверно определяется при наличии квалифицированного персонала и аппаратуры, и биение сердца и наличие спинальных рефлексов не считается препятствием для признания человека мертвым, а его органов — материалом для трансплантаций (если нет противопоказаний). В то время как юридические проблемы, связанные с состоянием "смерть головного мозга", удалось в основном разрешить после детальной разработки соответствующих законов, биоэтические проблемы отчасти еще не решены, особенно если речь идет о необходимости принять во внимание религиозные взгляды, что остановить бьющееся сердце может Бог, а человек, если делает это, становится убийцей.
6.5.1. Головной мозг и принципы его функционирования. Головной мозг представляет собой передний отдел центральной нервной системы позвоночных, расположенный в полости черепа; главный регулятор всех жизненных функций организма и материальный субстрат его высшей нервной деятельности. Общий план строения головного мозга. всех позвоночных совпадает: имеется (1) задний мозг , регулирующий витальные (жизненно важные) процессы — дыхание, кровообращение и др., а также координирующий простейшие формы двигательного поведения; (2) средний мозг , первоначально содержащий зрительные центры; (3) передний мозг , чья эволюционно первичная функция — обоняние. Задний и средний мозг объединяют понятием мозговой ствол.
Клссификация на передний, средний и задний мозг, являясь анатомической, не достаточна для понимания его функционирования. Особенно у приматов оказывается достаточно содержательной другая, функциональная классификация мозга на модули , каждый из которых может включать несколько анатомических отделов или, напротив, лишь часть отдела. Именно "модульная" классификация мозга имеет биополитическое значение и будет подробнее рассматриваться в последующих подразделах. Изложим в общей форме ряд общих принципов функционирования мозга – принципов, которые характерны для любых сложных сетевых систем и потому дают плодотворную пищу для аналогий между мозгом и человеческим социумом.
Параллельная работа различных отделов мозга и, в частности, параллельная обработка информации многими мозговыми структурами. Так, зрительная информация анализируется и в среднем мозгу, и в таламусе, и в коре больших полушарий, причем разные зрительные характеристики (формы, движения, яркость и др.) анализируются разными структурами в мозге. В порядке сравнения отметим, что и в человеческом социуме всякий новый важный стимул, скажем, угроза войны или экологический кризис (всякий вызов истории, как писал в своих работах английский историограф А. Тойнби), также разлагается на отдельные составляющие, которыми занимаются специалисты. Например, в случае военной угрозы армия готовится к отражению удара (разные рода войск – по-разному), пищевая промышленность проводит мероприятия по снабжению армии продовольствием, а также по созданию запасов для мирного населения, работники траспорта меняют график перевозок в соответствии с потребностями и др.
Принцип интеграции поступающей информации. Независимо процессированные разными отделами мозга зрительные характеристики объектов далее объединяются в целостную картину. Это "дело рук" так называемых ассоциативных зон коры больших полушарий. Последние уподобляются политической системе в государстве, задача которой объединить реакции разных специалистов на "вызов истории" (угрозу войны в приводимом выше примере) в единую общегосударственную стратегию. Однако мозг напоминает скорее не бюрократический , а сетевой вариант социума (см. раздел 4). Действительно, его модули действуют как независимые социальные сети – нет бюрократии, которая бы вначале в директивном порядке ставила перед ними задачи. "Порядок из хаоса", целостная картина из фрагментов возникает лишь вторично. Эта картина в целом – но не в некоторых деталях— в норме совпадает с реальным обликом наблюдаемых мозгом объектов. Однако можно показать, что мозг не механически, а творчески отражает окружающий мир. Он может его творчески дорабатывать и даже обманывать нас (известные примеры оптических иллюзий). Мы не видим черных дыр в зоне наших слепых пятен обоих глаз, ибо мозг закрашивает эти зоны общим фоном1
Французский король Людовик XIV забавлялся тем, что ставил придворных так, чтобы их головы приходились на зоны его слепых пятен. Тогда придворные представали перед ним без голов.
Принцип модульной организации. Мозг, как и вся нервная система, представляется совокупностью блоков, выполняющих определенные комплексы функций. К числу самых крупных модулей относятся: рептилиальный мозг, лимбическая система, неокортекс (рис. 13). Эти модули примерно соответствуют этапам эволюции головного мозга по линии пресмыкающиеся (рептилии) → млекопитающие → приматы . В целом мозг приматов (и человека), включающий все три указанных модуля в наиболее развитой форме, обозначается как триединый мозг (The Triune Brain) . Классификация мозга на три модуля напоминает концепцию Зигмунда Фрейда о трех элементах психики человека – ид (эволюционно древние мотивы поведения), суперэго (стихийные эмоции, чувство вины, страха и др.) и эго (рациональная оценка ситуации, рациональный контроль за поведением). Подчеркнем еще раз, что функциональные модули мозга не совпадают с его анатомическими отделами, данными выше — это разные классификации частей головного мозга.
Сигнальные вещества: биополитические аспекты
Одним из древних (с эволюционной точки зрения) каналов коммуникации является коммуникация с помощью химических агентов (см. выше 5.5.). Химические коммуникационные агенты (сигнальные вещества) переносят информацию между свободно живущими одноклеточными существами; между клетками внутри организма; между многоклеточными организмами. Достаточно многие из сигнальных веществ эволюционно-консервативны. Они возникли в эволюции как сигналы, используемые микроорганизмами и далее приобрели новые роли у многоклеточных организмов, включая высших животных и человека. Многие из категорий сигнальных веществ представляют несомненный биополитический интерес, влияя на социальное поведение человека. Мы рассмотрим в этом подразделе 1) нейротрансмиттеры; 2) гормоны и 3) феромоны. Следует иметь в виду, что многие химические агенты сочетают несколько ролей, например, серотонин одновременно выступает как нейротрансмиттер и в то же время как локально действующий внутритканевый агент межклеточной коммуникации (гистогормон). Серотонин и целый ряд других соединений, выполняющих нейромедиаторные функции у животных и человека, представляют собой весьма эволюционно-консервативные агенты, содержащиеся в тканях растений, в донервных эмбрионах животных2 , у одноклеточных форм жизни (Олескин и др., 1998, 2000).
См. Рощина В. В. Биомедиаторы в растениях. Ацетилхолин и биогенные амины. Пущино 1991. С.31-37; Бузников Г.А. Нейротрансмиттеры в эмбриогенезе. М. 1987. С. 30-40.
6.6.1. Нейротрансмиттеры у микроорганизмов. Для создания эволюционно-биологической перспективы для дальнейшего повествования о непосредственном вкладе нейротрансмиттеров в биополитику компактно изложим собственные данные о синтезе нейротрансмиттеров про- и эукариотическими микроорганизмами и об эффектах добавленных нейротрансмиттеров в микробных системах3 :
Экспериментальные данные излагаются в работах: Олескин А.В., Кировская Т.А., Ботвинко И.В., Лысак Л.В. Действие серотонина (5-окситриптамина) на рост и дифференциацию микроорганизмов // Микробиология. 1998. Т.67. № 3. С.305-312; Цавкелова Е.А., Ботвинко И.Б., Кудрин В.С., Олескин А.В. Детекция нейромедиаторных аминов у микроорганизмов методом высокоэффективной жидкостной хроматографии // Докл. Росс. Акад. Наук. 2000. Т. 372. С.840—842. См. также обзоры (Олескин и др., 1998, 2000).
Микроорганизмы содержат аминные нейротрансмиттеры . Методом высокоэффективной жидкостной хроматографии с электродетекцией продемонстрировано наличие серотонина в биомассе грамположительных бактерий Bacillus subtilis и Staphylococcus aureus в концентрациях порядка 10 -6 М, сопоставимых с его содержанием в крови млекопитающих (таблица). Катехоламины (норадреналин и дофамин) оказались широко распространены у тестированных прокариот; их концентрации приблизительно соответствуют таковым в крови млекопитающих или даже превышают последние. Экуариоты (дрожжи Saccharomyces cerevisiae и грибок Pennicilum chrysogenum )содержали только норадреналин из числа детектироованных аминных нейротрансмиттеров. У большинства микроорганизмов обнаружены также продукты метаболизма (окислительного дезаминирования) нейротрансмиттеров – 5-гидроксииндолуксусная кислота (5-ГИУК) и дигидрофенилуксусная кислота (ДГФУК). В разделе 5 (5.13) мы упомянули биополимерное покрытие клеток в колонии (матрикс). На примере богатой матриксом бактерии B. subtilis (вариант М) нами продемонстрировано, что нейромедиаторные амины (норадреналин и дофамин) содержатся не внутриклеточно, а в покрывающем клетки матриксе. Данный факт представляет довод в пользу возможной межклеточной коммуникативной роли этих аминов, поскольку слагающие матрикс биополимеры способствуют диффузии низкомолекулярных химических сигналов в пределах колонии. В свете предположения о внутриколониальной коммуникативной функции нейротрансмиттеров они, возможно, служат информационными молекулами ограниченного радиуса действия не только у многоклеточных животных (где они "прицельно" передают информацию от нейрона к нейрону, см. ниже), но и даже у прокариот, ибо матрикс удерживает низкомолекулярные вещества в пределах синтезировавшей их микробной колонии.
Микроорганизм | Нораденалин | Дофамин | ДГФУК | Серотонин | 5-ОИУК |
Bacillus cereus | - | 2.13 | 0.69 | 0.85 | 0.95 |
B. mycoides | 0.32 | 0.25 | 0.81 | - | 0.33 |
B. subtilis
: В целом Фракция клеток Фракция матрикса |
0.25 | 0.36 | - | - | 0.42 |
- | - | - | - | - | |
0.26 | 0.34 | - | - | 0.52 | |
Staphylococcus aureus | - | 1.35 | 1.54 | 2.2 | - |
Escherichia coli | - | 1.61 | 2.64 | - | 0.81 |
Proteus vulgaris | 0.6 | 0.73 | 0.46 | - | 0.4 |
Pseudomonas aeruginosa , вариант R | - | - | 1.62 | - | 2.7 |
P. aeruginosa , вариант S | - | - | 3.74 | - | 2.1 |
Serratia marcescens | 1.87 | 0.6 | 1.47 | - | 0.51 |
Zoogloea ramigera | - | - | 14.2 | - | 0.34 |
Дрожжи | 0.21 | - | - | - | 0.26 |
Penicillum chrysogenum | 21.1 | - | 88.9 | - | 10.8 |
Добавленные нейротрансмиттеры вызывают ростовые и структурные эффекты в микробных системах. Так, мы показали, что серотонин (Рис. 14) в микромолярных концентрациях (0,1—25 мкМ), стимулируют рост кишечной палочки Escherichia coli, пурпурной бактерии Rhodospirillum rubrum 4 В тех же концентрациях серотонин меняет макро- и микроструктуру колоний – стимулирует агрегацию микробных клеток (образование их скоплений) и формирование межклеточного матрикса (Рис. 15). В более высоких концентрациях (25-50 мкМ и выше) серотонин оказывает противоположное влияние – частично подавляет рост микроорганизмов и агрегацию их клеток с матриксообразованием. Стимуляция роста микробных культур наблюдали также в присутствии дофамина, но не норадреналина (не показано). Эффекты микромолярных концентраций серотонина и дофамина нами интерпретируются в рамках предположения о сигнальной роли этих агентов, что согласуется с приведенными выше данными об их эндогенном синтезе. По их концентрации клетки могут оценивать плотность собственной популяции и активно расти, если эта плотность выше определенного порога (гипотеза кворум-зависимого действия нейротрансмиттеров, по аналогии с данными литературы об эффектах других коммуникативных факторов, см. обзор Олескин и др., 2000). Для выяснения конкретных механизмов действия нейромедиаторов в микробных системах(предположительно зависимых от рецепторов в мембранах) в настоящее время наша лаборатория исследует их эффекты на мембранный потенциал, скорость дыхательного транспорта элеткронов и другие параметры микробных мембранных систем.
Стимуляция серотонином роста бактерии Enterocococcus faecalis и дрожжей Candida guillermondii устаноывлена в работах другой лаборатории. См. Страховская М.Г., Иванова Е.В., Фрайкин Г.Я. Стимулирующее влияние серотонина на рост дрожжей Candida guillermondii и бактерий Streptococcus faecalis //Микробиология. 1993. Т.62. С.46-49.
Полученные данные в о роли нейротрансмиттеров серотонина, норадреналина и дофамина в микробных системах представляют интерес не только как яркая иллюстрация эволюционно-консервативного характера этих сигнальных молекул. Известно, что митохондрии эукариотических клеток – симбиотические потомки прокариот, а именно, той их подгруппы, в состав которой входит E. coli и R.rubrum. Поэтому исследования бактериальных рецепторов к нейромедиаторам и в целом эффектов эволюционно-консервативных нейромедиаторов в микробных системах актуальны для нейрохимии мозга в связи с данными о роли митохондрий мозговых нейронов в связывании нейромедиаторов. Избыточное связывание нейротрансмиттеров рецепторами митохондриальных мембран нейронов мозга – важная предпосылка ряда мозговых заболеваний (инсульт, болезнь Альцгеймера и др.)5 . Что касается конкретно серотонина, то он представляется в свете изложенных фактов эволюционно консервативным "гормоном социальности", побуждающим клетки и целые многоклеточные организмы вступать во взаимодействие друг с другом, формировать социальные структуры (Masters, 1994). Отметим в порядке сопоставления, что серотонин вызывает агрегацию также тромбоцитов крови млекопитающих. От эволюционно-биологической перспективы с включением данных о нейромедиаторах в микробных системах перейдем к их специфической роли в нервной системе высших животных и человека.
Montal M. Mitochondria, glutamate neurotoxicity and the death cascade // Biochim. Biophys. Acta. 1998. V.1366. P.113-126
6.6.2. Нейротрансмиттеры и нейромодуляторы. Нейротрансмиттеры (нейромедиаторы) необходимы для передачи информации от нейрона к нейрону (или между нейронами и сенсорными клетками или клетками мышцы/железы). Интересно, что за перенос информации между двумя нейронами через разделяющих их синапс могут отвечать сразу несколько нейротрансмиттеров. В этом факте усматривают еще один пример параллельного действия модулей мозга – в данном случае нейротрансмиттерных систем. Говорят о своеобразной "мозговой демократии", позволяющей мозгу частично скомпенсировать дефицит одного нейротрансмиттера за счет использования другого (Харт, 1998).
Среди многих сотен обнаруженных нейротрансмиттеров, наиболее важными представляются следующие группы: (1) аминокислоты: глутаминовая кислота, аспрагиновая кислота глицин, гамма-аминомасляная кислота (ГАМК); (2) моноаминовые нейротрансмиттеры: серотонин, ацетилхолин, катехоламины (адреналин, норадреналин, дофамин); (3) летучие неорганические нейротрансмиттеры исследуемые в последние годы, особенно окись азота (NO); (4) пептиды (например, вещество Р); многие из пептидов, впрочем, чаще играют не непосредственно нейротрансмиттерную, а нейромодуляторную роль — повышают или понижают эффективность переноса информации через синапс, обслуживаемый другим нейротрансмиттером. Нейромодуляторная роль характерна для эндорфинов и энкефалинов.
Каждый из нейротрансмиттеров характерен для определенной группы нейронов (кластеров или цепочек). Дофамин , например, присущ группам нервных клеток в некоторых районах среднего мозга; норадреналин — небольшому кластеру в варолиевом мосту – синему пятну, участвующему в регуляции сна со сновидениями (см. 6.5.2), а также прилежащим к нему участкам среднего мозга. Cеротонин выделяется нейронами ядер шва в стволе мозга; аксоны (длинные отростки) этих нервных клеток находятся в различных зонах неокортекса и лимбической системы. Много серотонина содержится в эпифизе, или шишковидной железе (рудименте третьего глаза, функционирующего до сих пор у пресмыкающегося гаттерии). Здесь серотонин превращается в мелатонин . Мелатонин совместно с серотонином регулирует цикл сна и бодрстовования. В частности, мелатонин вырабатывается в темноте и способствует сонливости и засыпанию человека в темное время суток. Ацетилхолин транспортирует информацию не только от нейрона к нейрону, но и от нейрона к мышечной клетке (действие яда кураре основано на предотвращении переноса команды с нейрона на мускульную клетку при участии ацетилхолина).
Уровень нейротрансмиттеров в значительной мере определяет поведенческие возможности животного или человека, тонус, настроение и др. Ацетилхолин важен для первоначального запоминания новой информации и последующих процессов консолидации памяти (придания ей устойчивого долговременного характера). Нехватка дофамина в сответствующих участках мозга ведет к потере инициативы (к "сидению и мечтанию"), более серьезный дефицит — к полной невозможности совершить активное действие; дальнейшее развитие этого состояния может вести к синдрому Паркинсона. Избыток дофамина способствует поведению, связанному с "поиском наслаждений" (гедонистическое поведение) – от вкусной еды6 до интересного видеофильма, но слишком существенный избыток этого нейротрансмиттеров рассматривается, по одной из гипотез, как причина шизофрении (Харт, 1998).
Крыса независимо от уровня дофамина в мозгу отличает вкусный сладкий сахар от горького порошка хинина, но стремление к вкусному "блюду" у нее возрастает по мере повышения уровня этого нейротрансмиттера. См. Berridge K.C., Robinson T.E. What is the role of dopamine in reward: hedonic impact, reward learning or incentive salience? //Brain Res.: Brain Res. Rev. 1998. V.28. N 3. P.309—369.
Особое биополитическое звучание имеют исследования эффектов серотонина , так как опыты М.Т. МакГвайера и других ученых показали его роль в определении социального статуса и упорядочении ранговой иерархии у столь различных существ как сверчки, омары и обезьяны. Установлено, что более высокие уровни серотонина соответствуют более высокому рангу в иерархии (McGuire, 1982; Masters, 1994; Raleigh, McGuire, 1994). Так, доминант в группе зеленых мартышек-верветок имеет больше серотонина в сыворотке крови и прдукта переработки серотонина 5-гидроксииндоуксусной кислоты в спинномозговой жидкости, нежели подчиненные особи.
Изменение социальной ситуации меняет уровни серотонина (и других нейротрансмиттеров) у
10-09-2015, 02:38