Роль интуиции и неявного знания в формировании стиля математического мышления

школьный опыт практического освоения математики согласится, что математика - особый предмет, требующий углубленного изучения и дающийся далеко не всем. А ведь еще необходимо участие личностного фактора при осуществлении математической символизации - этого нельзя избежать при исследовании на самом высоком метатеоретическом уровне (об этом здесь говорилось ранее).

Итак, неявное знание личностно, и значит, строго индивидуально. Именно эта его особенность и обуславливает уникальность, ценность и незаменимость каждой творческой личности, независимо от рода деятельности. Разумеется, это не означает, что неявное знание в математике никак не связано с определенным социокультурным контекстом конкретной исторической эпохи. Понятно, что социокультурная среда необходима для формирования самых простейших навыков и умений, свойственных человеку.

Но поскольку неявное знание в целом неоднородно, что мы и показали здесь ранее, постольку роль социокультурной среды в формировании различных его типов также различна. При формировании первоначального слоя неявного знания, включающего онтологические предпосылки и образующего фундаментальный слой всего неявного знания личности в целом, важен не столько конкретный социокультурный контекст, сколько контекст собственно человеческий, само человеческое общение. Без неявного знания этого типа не может сформироваться и неявное знание другого типа, образующееся при обучении математике и решении задач. И вот для формирования неявного знания этого типа, которое затем станет плацдармом для серьезных самостоятельных занятий математикой и математических открытий, социокультурный контекст является решающим. Это значит, что важным является то, в какой социокультурной среде растет будущий математик, насколько эта среда связана с математическим сообществом, какие в нем господствуют идеалы математического познания. Чем более глубоки эти связи, тем более разнообразные математические впечатления испытывает будущий математик, тем более мощным будет слой его неявного знания и тем больше будет возможностей у личности для успешной математической деятельности - при условии равной одаренности.

Интересно, что разрыв во времени в формировании этих двух типов неявного знания может быть достаточно длительным. Например, Якоб Штейнер, швейцарский пастух, который в девятнадцать лет научился у Песталоцци читать и писать, благодаря своей геометрической интуиции достиг положения профессора Берлинского университета [7]. Он высказывал идеи, выходящие за рамки математики прошлого века, хотя они и были лишены доказательств. Этот не единственный, но редкий случай тем не менее достаточно показателен.

Важно отметить, что необходимость участия личностного фактора - а именно неявного знания и интуиции - в процессе формирования и передачи нового знания в математике не может исключить конечной интерсубъективности его содержания, которая достигается в результате теоретического обоснования этого нового знания. А такое теоретическое обоснование возможно вследствие общности анатомии и физиологии субъектов познания, общности их социального опыта и языковых навыков. Благодаря этому возможна исследовательская деятельность вообще, а не только в области математики.

Список литературы

1. Пуанкаре А. Наука и метод // О науке. М.: "Наука", 1990.

2. Адамар Ж. Исследование психологии изобретения в области математики. М.: "Советское радио", 1970.

3. Султанова Л.Б. Взаимосвязь неявного знания и эвристической интуиции // Вестник МГУ, 1995. Серия философия.

4. Полани М. Личностное знание. М.: 1985.

5. Пуанкаре А. Ценность науки // О науке. М.: "Наука", 1990.

6. Левин В.И. Рамануджан - математический гений Индии. М.: 1968.

7. Клейн Ф. Лекции о развитии математики в XIX столетии. М.: 1989.

8. Успенский В.А. Теорема Геделя о неполноте. М.: 1982.

9. Мичи Д., Джонстон Р. Компьютер-творец. М.: "Мир", 1987.

10. Серебряников О.Ф. Эвристические принципы и логическое мышление. М.: 1979.

11. Султанова Л.Б. Рациональная реконструкция эволюции математического метода интерпретаций // Материалы научной конференции студентов, аспирантов и молодых ученых /XXXXY/. Уфа, 1994.

12. Стяжкин Н.И. Становление идей математической логики. М.: 1964.

13. Султанова Л. Б. Роль интуиции и неявного знания в формировании стиля математического мышления.




10-09-2015, 03:21

Страницы: 1 2
Разделы сайта