Развитие элементарных математических представлений у детей 4-5 лет в свете современных требований

пространственные отношения, преобразуют предметы различных форм и величин. Ребёнок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимости на предметах и числовом уровне.

Объём представлений следует рассматривать в качестве основы познавательного развития. Познавательные и речевые умения составляют как бы технологию процесса познания, минимум умений, без освоения которых дальнейшее познание мира и развитие ребёнка будет затруднительно. Активность ребёнка, направленная на познание, реализуется в содержательной самостоятельной игровой и практической деятельности, в организуемых воспитателем познавательных развивающих играх.

Взрослый создаёт условия и обстановку, благоприятные для вовлечения ребёнка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т.д. При этом инициатива в развёртывании игры, действия принадлежит ребёнку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс её развития, способствует получению результата.

Ребёнка окружают игры, развивающие его мысль и приобщающие его к умственному труду. Например, игры из серии: "Логические кубики" , "Уголки", "Составь куб" и другие; из серии: "Кубики и цвет", "Сложи узор", "Куб-хамелеон" и другие.

Нельзя обойтись и без дидактических пособий. Они помогают ребёнку вычленить анализируемый объект, увидеть его во всём многообразии свойств, установить связи и зависимости, определить элементарные отношения, сходства и отличия. К дидактическим пособиям, выполняющим аналогичные функции, относятся логические блоки Дьенеша, цветные счётные палочки (палочки Кюизенера), модели и другие.

Играя и занимаясь с детьми, воспитатель способствует развитию у них умений и способностей:

- оперировать свойствами, отношениями объектов, числами; выявлять простейшие изменения и зависимости объектов по форме, величине;

- сравнивать, обобщать группы предметов, соотносить, вычленять закономерности чередования и следования, оперировать в плане представлений, стремиться к творчеству;

- проявлять инициативу в деятельности, самостоятельность в уточнении или выдвижении цели, в ходе рассуждений, в выполнении и достижении результата;

-рассказывать о выполняемом или выполненном действии, разговаривать со взрослыми, сверстниками по поводу содержания игрового (практического ) действия.

Основные представления, познавательные и речевые умения, которые осваиваются детьми 4-5 лет в процессе овладения математическими представлениями:

СВОЙСТВА.

Представления.

Размер предметов: по длине (длинный, короткий); по высоте (высокий, низкий); по ширине (широкий, узкий); по толщине (толстый, тонкий) ; по массе (тяжёлый, лёгкий); по глубине(глубокий, мелкий); по объёму (большой, маленький).

Геометрические фигуры и тела: круг, квадрат, треугольник, овал, прямоугольник, шар, куб, цилиндр.

Структурные элементы геометрических фигур: сторона, угол, их количество.

Форма предметов: круглый, треугольный, квадратный. Логические связи между группами величин, форм: низкие, но толстые; найти общее и различное в группах фигур круглой, квадратной, треугольной форм.

Связи между изменениями(сменой) основания классификации (группировки) и количеством полученных групп, объектов в них.

Познавательные и речевые умения. Целенаправленно зрительно и осязательно двигательным способом обследовать геометрические фигуры, предметы с целью определения формы. Попарно сравнивать геометрические фигуры с целью выделения структурных элементов: углов, сторон, их количества. Самостоятельно находить и применять способ определения формы, размера предметов, геометрических фигур. Самостоятельно называть свойства предметов, геометрических фигур; выражать в речи способ определения таких свойств, как форма, размер; группировать их по признакам.

ОТНОШЕНИЯ.

Представления.

Отношения групп предметов: по количеству, по размеру и т.д. Последовательное увеличение(уменьшение) 3-5 предметов.

Пространственные отношения в парных направлениях от себя, от других объектов, в движении в указанном направлении; временные- в последовательности частей суток, настоящем, прошедшем и будущем времени: сегодня, вчера и завтра.

Обобщение 3-5 предметов, звуков, движение по свойствам - размеру, количеству, форме и др.

Познавательные и речевые умения. Сравнивать предметы на глаз, путём наложения, приложения. Выражать в речи количественные, пространственные, временные отношения между предметами, пояснить последовательное увеличение и уменьшение их по количеству, размеру.

ЧИСЛА И ЦИФРЫ.

Представления.

Обозначение количества числом и цифрой в пределах 5-10. Количественное и порядковое назначение числа. Обобщение групп предметов, звуков и движений по числу. Связи между числом, цифрой и количеством: чем больше предметов, тем большим числом они обозначаются; сосчитывание как однородных, так и разнородных предметов, в разном расположении и т.д.

Познавательные и речевые умения.

Сосчитывать, сравнивать по признакам, количеству и числу; воспроизводить количество по образцу и числу; отсчитывать.

Называть числа, согласовывать слова-числительные с существительными в роде, числе, падеже.

Отражать в речи способ практического действия. Отвечать на вопросы: "Как ты узнал, сколько всего?"; "Что ты узнаешь, если сосчитаешь?"

СОХРАНЕНИЕ (НЕИЗМЕННОСТЬ) КОЛИЧЕСТВА И ВЕЛИЧИН.

Представления.

Независимость количества числа предметов от их расположения в пространстве, сгруппированности.

Неизменность размеров, объёма жидких и сыпучих тел, отсутствие или наличие зависимости от формы и размера сосуда.

Обобщение по размеру, числу, по уровню наполненности одинаковых по форме сосудов и т.д.

Познавательные и речевые умения зрительно воспринимать величины, количества, свойства предметов, сосчитывать, сравнивать с целью доказательства равенства или неравенства.

Выражать в речи расположение предметов в пространстве. Пользоваться предлогами и наречиями: справа, сверху, от..., рядом с..., около, в, на, за и др.; пояснить способ сопоставления, обнаружения соответствия.

АЛГОРИТМЫ.

Представления.

Обозначение последовательности и этапности учебно-игрового действия, зависимости порядка следования объектов символом (стрелкой). Использование простейших алгоритмов разных типов (линейных и разветвленных).

Познавательные и речевые умения. Зрительно воспринимать и понимать последовательность развития, выполнения действия, ориентируясь на направление, указанное стрелкой.

Отражать в речи порядок выполнения действий: сначала; потом; раньше; позже; если..., то.

Пятилетки проявляют высокую познавательную активность, они буквально забрасывают старших разнообразными вопросами об окружающем мире. Исследуя предметы, их свойства и качества, дети пользуются разнообразными обследовательскими действиями: умеют группировать объекты по цвету, форме, величине, назначению, количеству; умеют составить целое из 4-6 частей; осваивают счёт.

Дети радуются своим достижениям и новым возможностям. Они нацелены на творческие проявления и доброжелательное отношение к окружающим. Индивидуальный подход воспитателя поможет каждому ребёнку проявить свои умения и склонности в разнообразной увлекательной деятельности.

1.3. Психолого-педагогические основы развития математических представлений у детей 4-5 лет.

Это большая ошибка думать, что ребёнок приобретает понятие числа и другие математические понятия непосредственно в обучении. Наоборот, в значительной степени он развивает их самостоятельно, независимо и спонтанно. Когда взрослые пытаются навязать ребёнку математические понятия преждевременно, он выучивает их только словесно; настоящие могут поставить себя на место своего слушателя. Они исходят из своих собственных позиций и непосредственно из того момента, в который происходят описываемые события. Ребёнок ещё не различает, что можно считать само собой разумеющимся, а что нет.

Таким образом, можно сказать, что ребёнок-дошкольник не обладает достаточными способностями для того, чтобы связывать друг с другом временные, пространственные и причинные последовательности и включать их в более широкую систему отношений. Он отражает действительность на уровне представлений, а эти связи усваиваются им в результате непосредственного восприятия вещей и деятельности с ними. При классификации объекты или явления объединяются на основе общих признаков в класс или группу, например: все люди, которые умеют водить машину и т.д. Классификация вынуждает детей подумать о том, что лежит в основе сходства и различия разнообразных вещей, поскольку ему необходимо сделать заключение о них.

Основные представления о постоянстве, операциях классификации и сериации образуют более общую схему у всех детей примерно между 4 и 7 годами жизни. Они создают фундамент для выработки логического последовательного мышления.(13-15,25,32-33).

Глава II Методы и организация исследования

Методы:

1.Анализ специальных литературных источников.

2. Педагогический эксперимент:

-констатирующий (диагностика математического развития детей, соответствие его современным требованиям),

- формирующий эксперимент,

- контрольный эксперимент.

3. Методы математической обработки данных.

Организация исследования:

Исследование проводилось в три этапа в период с сентября 1998г. по май 1999г. на базе Детского сада № 30 г. Ейска. В исследовании принимали участие две однородные группы детей, каждая из которых насчитывала по десять детей в возрасте 4-5 лет.

На первом этапе (сентябрь- октябрь)изучалась и анализировалась литература, подбиралась система игр. При анализе литературы были изучены 44 источника, куда вошли работы учёных, монографии, статьи, освещающие передовой педагогический опыт. Проанализировано 8 источников зарубежной литературы.

На втором этапе (ноябрь-декабрь) проводилось обследование двух групп детей (экспериментальной и контрольной) с целью выявления их уровня математического развития перед началом эксперимента, а также после его окончания.

Основной педагогический эксперимент проходил с января 1998г. по апрель 1999г. с целью проверки эффективности разработанной системы игр. На третьем этапе проводились обобщения, математическая обработка полученных результатов.

Педагогический эксперимент:

Взяла две группы детей (по десять человек) среднего дошкольного возраста: контрольную группу, работающую по "Программе воспитания и обучения в детском саду " под ред. Васильевой, экспериментальную группу, работающую по предложенной мною методике.

Констатирующий эксперимент проводился с целью выявления уровня развития каждого ребёнка. В качестве основного метода исследования использовалась диагностика математического развития. Детям были предложены четыре теста, в состав которых входили дидактические игры.

I. Методы исследования количественных представлений

Сосчитай себя.

1. Назвать части своего тела, которых по одной (голова, нос, рот, язык, грудь, живот, спина).

1. Назвать парные органы тела (2 уха, 2 виска, 2 брови, 2 глаза, 2 щеки, 2 губы: верхняя и нижняя, 2 руки, 2 ноги). 3.

2. Показать те органы тела, которые можно считать до пяти (пальцы рук и ног).

Зажги звёзды.

Игровой материал: лист бумаги тёмно-синего цвета - модель ночного неба; кисть, жёлтая краска, числовые карточки( до пяти).

1. "Зажечь" (концом кисти) столько "звёзд на небе", сколько изображено фигур на числовой карточке.

2. Тоже самое. Выполнять, ориентируясь по слуху на количество ударов в бубен или под крышкой стола, сделанных взрослым.

Помоги Буратино.

Игровой материал: игрушка Буратино, монеты (в пределах 7-10 штук ). Задание: помочь Буратино отобрать такое количество монет, которое ему подарил Карабас Барабас.

II Величина

Ленточки.

Игровой материал: полоски бумаги разной длины- модели лент. Набор карандашей.

1.Самую длинную "ленточку" закрась синим карандашом, "ленточку" покороче закрась красным карандашом и т.д.

2. Уравнять все "ленточки" по длине.

Разложи карандаши.

На ощупь разложить карандаши разной длины в порядке возрастания или убывания.

Разложи коврики.

Разложить "коврики" в возрастающем и убывающем порядке по ширине.

III. Методы исследования представлений о геометрических фигурах.

Какой формы ?

Игровой материал: набор карточек с изображением геометрических форм.

1. Взрослый называет какой-либо предмет окружающей обстановки, а ребёнок карточку с геометрической формой, соответствующей форме названного предмета.

2. Взрослый называет предмет, а ребёнок словесно определяет его форму. Например, косынка-треугольник, яйцо- овал и т.д.

Мозаика.

Игровой материал: набор геометрических форм. С помощью геометрических форм выложить сложные картинки.

Почини коврик.

Игровой материал: иллюстрация с геометрическим изображением порванных ковриков.

Найти подходящую (по форме и цвету) заплатку и "починить" (наложить) её на дырку.

IV. Методы исследования пространственных представлений.

Исправь ошибки.

Игровой материал: 4 больших квадрата белого, жёлтого, серого и черного цветов- модели частей суток. Сюжетные картинки, изображающие деятельность детей в течении суток. Они положены сверху квадратов без учёта соответствия сюжета модели. Исправить ошибки, допущенные Незнайкой, объяснить свои действия.

Узор.

Определить направления движения от себя (направо, налево, вперёд, назад, вверх, вниз).

Игровой материал: карточка с узором, составленным из геометрических форм.

Описать узор от себя.

Найди различия.

Игровой материал: набор иллюстраций с противоположным изображением предметов.

Найти различия.

В качестве критериев оценки уровня математического развития использовалась десятибалльная система.

8-10 баллов - ребёнок оперирует свойствами объектов, обнаруживает зависимости и изменения в группах объектов в процессе группировки, сравнения; сосчитывает предметы в пределе 10. Устанавливает связи увеличения(уменьшения) количества, чисел, размеров предметов по длине, толщине, высоте, и т.д. Проявляет творческую самостоятельность в практической, игровой деятельности, применяет известные ему способы действия в иной обстановке.

4-7 баллов - ребёнок различает, называет, обобщает предметы по выделенным свойствам. Выполняет действия по группировке, воссозданию фигур. Обобщает группы предметов по количеству (числу), размеру. Считает в пределе 4-7. Самостоятельно осуществляет действия, веющие к изменению количества, числа, величины. Затрудняется в высказываниях, пояснениях.

1-3 балла - ребёнок различает предметы по отдельным свойствам, называет их, группирует в совместной со взрослым деятельности. Пользуется числами в пределах 3-5, допускает ошибки. Выполняет игровые практические действия в определенной последовательности; связи между действиями (что сначала, что потом) не устанавливает.

Критерии констатирующего эксперимента.

1. Обобщение геометрических фигур, предметов по форме, размеру, цвету и т.д. Выделение одновременно трёх свойств геометрических фигур (форма, цвет, размер).

2. Ориентировка в групповой комнате по плану, умение двигаться в заданном направлении, определение расположения предмета по отношению к себе. Ориентировка на плоскости стола и листе бумаги.

3. Классификация предметов по одному, двум признакам. Число как показатель количества, итог счёта; порядок следования и место в общей последовательности чисел.

4. Активное участие в воссоздании силуэтов, построек, изображений в играх моделирующего характера как по образцу, так и по собственному замыслу.

Формирующий эксперимент предполагал разработку системы математического развития детей 4-5 лет в контексте разных видов деятельности. При проведении формирующего эксперимента решались следующие задачи:

- создать развивающую среду; определить наиболее оптимальный подход для детей 4-5 лет;

- составить систему игр;

- экспериментально апробировать воздействие разработанной системы игр на формирование математических представлений.

Для решения поставленных целей и задач мы решили провести игры по развитию математических представлений у детей 4-5 лет. Для этого мы разделили все игры по принципу от простого к сложному. Формирующий эксперимент проходил в три этапа с экспериментальной группой. (Приложение1 )

Эксперимент проводился в естественных условиях.

После формирующего эксперимента с экспериментальной группой детей был проведён контрольный эксперимент по этой же методике, целью которого было выявление успешности обучения математическим представлениям по разработанной системе.

Математическая обработка и анализ результатов

Определение среднего арифметического величины показателей вычислялось по формуле:

- знак суммирования

- варианты или значения признака (данные одного ребенка)

n – количество детей

Средняя арифметическая величина позволяет сравнивать и оценивать группы изучаемых явлений в целом.

Затем определялось среднеквадратичное отклонение:

Хмакс – наибольшее значение варианта

Хмин – наименьшее значение варианта

R – табличный коэффициент

Ошибка среднеарифметической величины определялась по формуле:

n- число вариантов

- среднеквадратичное отклонение

Уровень достоверности различий вычисляется по формуле:

t =

Х1 – среднеарифметическое значение экспериментальной группы

Х2 – среднеарифметическое значение контрольной группы

Процент прироста получился, когда мы отняли среднее арифметическое до эксперимента от среднего арифметического после эксперимента.

Глава III Результаты исследования и их обсуждение.

В результате педагогического эксперимента было выявлено, что изначально показатели умственного развития детей экспериментальной и контрольной групп имели примерно равный потенциал, равные возможности.

Средние значения показателей констатирующего эксперимента приведены в таблице 1.

Таблица 1

Показатель Контрольная группа Х± m Экспериментальная группа Х ± m

t

Р

Количество и счёт

3,6 ± 0,2

3,5 ± 0,2

0,3

>0,05

Величина

3,1±0,2

3,5 ± 0,3

1

>0,05

Геометрические фигуры

3,6±0,3

3,5 ± 0,2

0,7

>0,05

Ориентировка в пространстве

3,1 ±0,3

3,0 ± 0,2

0,25

>0,05

Разработанная система дидактических игр и апробация этой системы предусматривала отбор дидактических игр в соответствии со следующими критериями:

- соответствие игрового материала задачам исследования;

- включенность тех психических процессов, которые несут преимущественную нагрузку в процессе обучения;

-доступность и эмоциональная привлекательность игрового материала.

Игры использовались во всех формах работы по формированию элементарных математических представлений у детей дошкольного возраста; утренней гимнастике; физкультурных занятиях; в повседневной жизни; активном отдыхе и непосредственно, в самостоятельной поисковой деятельности.

Игровая форма обучения повышала настроение детей» способствовала проведению игр в эмоциональном ритме, а самое главное -развитию элементарных математических способностей.

Важным условием самостоятельной игровой деятельности являлось создание предметной среды, имеющей развивающий характер, т.е. создание предметного оснащения для самостоятельных игр.

Необходимо отметить, что с контрольной группой проводилась работа по формированию элементарных математических представлений, в основе которой лежала "Программа воспитания и обучения в детском саду" под ред. Васильевой, а в экспериментальной - работа шла по разработанной мною системе дидактических игр.

После проведения формирующего эксперимента был проведён контрольный эксперимент.

Средние значения показателей контрольного эксперимента показаны в таблице 2.

Таблица 2

Показатель

Экспериментальная группа Х± m Контрольная группа Х± m

t

Р

Количество и счёт

6,42 ± 0,2

3,9 ± 0,2

8,4

<0,05

Величина

5,82 ± 0,2

4,3 ± 0,2

5,0

<0,05

Геометричес-кие фигуры

6,29 ± 0,2

4,4 ± 0,2

6,3

<0,05

Ориентировка в пространстве

6,13±0,2

4,0 ± 0,2

7,1

<0,05

Таким образом, проделанная работа по формированию у детей математических представлений дала свои положительные результаты. Полученные данные дают возможность предположить, что у детей в исследуемых группах произошёл прирост в средних показателях математического развития. В экспериментальной группе произошёл прирост по разделам:

количество и счёт -28,2 %

величина-27,2 %

геометрические фигуры - 26,9 % ориентировка в пространстве- 30,3 %

В контрольной группе соответственно: количество и счет- 4 %

величина-12 %

геометрические фигуры -9 %

ориентировка в пространстве- 10% (Приложение 2 )

Улучшение показателей в экспериментальной группе обусловлено использованием предложенной мною системы дидактических игр. Стабильная, систематическая работа в данном направлении позволила повысить уровень математических знаний у детей экспериментальной группы, у них был сформирован соответствующий уровень умений и навыков.

выводы

1. Исследование показало, что разработанная нами система работы по математическому развитию детей с учетом современных требований "Концепции дошкольного образования" способствовала повышению уровня математического развития детей, что подтвердило нашу гипотезу.

2. Элементарные знания по математике, определённые современными требованиями, в основном усваиваются детьми, но необходимо углубление и дифференциация индивидуальной работы с каждым ребёнком, что может быть предметом нашего дальнейшего исследования.

3. Обновление и качественное улучшение системы математического развития дошкольников позволяет педагогам


10-09-2015, 03:24


Страницы: 1 2 3 4
Разделы сайта