Современные зарубежные свайные дизель молоты

Новосибирский Государственный

Архитектурно-строительный университет.

Кафедра : МиА

Реферат на тему :

Современные зарубежные свайные дизель-молоты.

Выполнила : студ. гр. 371

Матыцина А.П

Принял:

Новосибирск 2000

Содержание

ВВЕДЕНИЕ.................................................................................................................... 3

1. НОВЫЕ ТРУБЧАТЫЕ ДИЗЕЛЬ-МОЛОТЫ С УДАРНЫМ РАСПЫЛИВАНИЕМ ТОПЛИВА фирмы DELMAG (ФРГ)............................................................................. 4

2. НОВЫЕ ДИЗЕЛЬ-МОЛОТЫ фирмы BRITISH STEEL PILING (Англия).............. 5

3. НОВЫЕ ДИЗЕЛЬ-МОЛОТЫ фирм KOBE STEEL и ISHIKAWAJIMA HARIMA (Япония).......................................................................................................................... 7

Заключение................................................................................................................... 11

Список литературы:..................................................................................................... 12


ВВЕДЕНИЕ

Трубчатые дизель-молоты с ударным распыливанием топ­лива и со свободным падением ударной части широко при­меняются в СССР и за рубежом для завивки в грунт различ­ных свайных элементов. Молоты этого типа обеспечивают со­вокупное воздействие на сваю удара и усилия от взрыва топ­лива в камере сгорания, что существенно увеличивает эффек­тивность сваебойных работ.

Ярко выраженная тенденция к повышению производитель­ности и эффективности всех видов строительных работ отра­жается и на требованиях к сваебойным молотам. Однако возможности дальнейшего повышения эффективности молота путем увеличения энергии удара для молота с регламентиро­ванной массой ударной части практически исчерпаны. Даль­нейшее повышение энергии удара возможно путем увеличения скорости ударной части в момент удара (что ограничивается прочностью забиваемой сваи) или путем увеличения высоты подскока ударной части (что приводит к снижению частоты ударов). Эти граничные условия и предопределяют основное направление повышения эффективности сваебойных работ — повышение единичной мощности сваебойного молота. Единич­ная, мощность дизель-молота может быть повышена двумя способами — увеличением массы ударной части и повышением частоты ударов.

Увеличение массы ударной части дизель-молота до 7500 и 15000 кг позволяет забивать в грунт тяжелые и сверхтяжелые сваи-оболочки, заменяющие собой десятки свай средних типо­размеров, что позволяет достигнуть существенной экономии материала, времени и снижения трудозатрат.

Вместе с тем, в ряде случаев наиболее рационально при­менять легкие и средние сваи; при этих видах сваебойных ра­бот повышение производительности обеспечивается примене­нием быстроходных дизель-молотов с увеличенной частотой ударов. Для дальнейшего повышения эффективности совершенству­ется процесс сгорания в двигателе дизель-молота, повышается долговечность молота, улучшаются условия эксплуатации (применяются специальные наголовники и устройства для бескопровой бойки).

Сваебойные дизель-молоты являются энергетически авто­номными машинами и практически вытеснили со стройплоща­док другие сваебойные средства, требующие подвода энергии. В последнее время широко используются гидравлические эк­скаваторы в качестве базовой машины для навески копрового оборудования. В этом случае наиболее рационально примене­ние гидравлического молота простого или двойного действия с приводом от двигателя копровой установки. Такая гидрофи-цированная копровая установка также энергетически авто­номна.


1. НОВЫЕ ТРУБЧАТЫЕ ДИЗЕЛЬ-МОЛОТЫ С УДАРНЫМ РАСПЫЛИВАНИЕМ ТОПЛИВА фирмы DELMAG (ФРГ)

Фирма Delmag, выпускавшая до последнего времени три модели трубчатых дизель-молотов с ударным распыливанием топлива D-5, D-12, D-22 с ударной частью массой соответст­венно 500, 1250, 2200 кг, дополнила номенклатуру дизель-мо­лотами моделей D-30, D-36, D-44, D-55 с ударной частью 3000, 3600, 4900 и 5400 кг. Эти молоты имеют существенные конст­руктивные отличия от ранее выпускаемых.

Рабочий цилиндр дизель-молотов выполнен литым и име­ет горизонтальные круговые ребра охлаждения, отлитые за одно целое с корпусом рабочего цилиндра, что снижает трудо­затраты при изготовлении и улучшает охлаждение. В нижней и верхней частях цилиндра имеются выступы для крепления к металлоконструкциям (для бескопровой бойки). Топливный и смазочный баки вынесены на направляющую трубу, что ос­ложняет заправку в процессе эксплуатации, но снижает на­грев топлива. Эти конструктивные особенности делают работу молота более стабильной, особенно при высокой температуре окружающего воздуха и при длительной непрерывной работе. Молот оснащен хорошо регулируемым топливным насосом к смазочным насосом, подающим масло в зону шаботных комп­рессионных колец и в рабочий цилиндр. Наголовник имеет широкие захваты, подвижно фиксирующие его относительно направляющих копровой установки.

Дизель-молоты D-44 и D-55 обладают высокой энергией удара и используются преимущественно для забивки тяжелых свай-оболочек. Например, молот D-44 использовался для за­бивки стальной трубы диаметром 2800 мм, длиной 36 м и мас­сой 64 г. За десять ударов в конце процесса погружения сум­марная величина осадки сваи-оболочки составляла 4 мм, в то время как при использовании в тех же условиях паровоздушного молота с ударной частью массой 6000 кг суммарная ве­личина осадки была лишь 0,4 мм.

Дизель-молот D-55 используется для забивки стальных свай-оболочек диаметром до 3300 мм, длиной 42 м и массой 120 т при возведении портовых сооружений.

Таблица 1.

Техническая характеристика
трубчатых дизель-молотов фирмы Delmag
с ударным распыливанием топлива
U-30 D-36 D-li D-55
Масса ударной части, кг ... 3000 3600 4300 5400
Наибольшая потенциальная энер­
гия ударной части, кгс-м . 7500 10200 12000 16200
Частота ударов, удар/лшм . 39—60 37—53 37—56 36—47
Высота молота, мм . . . . 4320 4563 4830 5410
Ширина захватов, мм .... 720 720 720
Емкость топливного бака, л . 38,5 83 88 88
Расход топлива, л/ч .... 11 14 17 21
Емкость масляного бака, л . 7 17 18 18
Расход масла, л/ч ..... 1,5 1,3 3 3
Наибольшее усилие, передаваемое
на сваю от вспышки топлива
(при Р:=91 кгс/см2 ), кгс . 100000 180000 200 000 250 000
Наибольший наклон забиваемой
сваи, град ...... 45 45 45 45
Масса молота (сухая) с кошкой,
без наголовника, кг 5600 7596 10200 11956

Кроме того, тяжелые дизель-молоты используются для за­бивки стальных труб меньшего диаметра (508 и 724 мм, масса 5000 кг) в плотные грунты и под наклоном.

Фирма Delmag выпускает дизель-молот с устройством для бескопровой бойки для забивки железобетонных свай-оболо­чек и стальных труб большого диаметра. Молот со­стоит из наголовника, закрепляемого на свае-оболочке, и кор­пуса, фиксирующего молот относительно наголовника и сваи-оболочки. На корпусе предусмотрены направляющие для кош­ки, используемой для установки молота и сваи на точку за­бивки и для запуска молота. Корпус устройства имеет проре­зи для обслуживания молота и доступа воздуха к ребрам ох­лаждения рабочего цилиндра.

2. НОВЫЕ ДИЗЕЛЬ-МОЛОТЫ фирмы BRITISH STEEL PILING (Англия)

Фирма British Steel Piling, производившая до последнего времени три модели дизельных молотов DE-20, DE-30, DE-40 (с ударной частью массой соответственно 907, 1814, 2270 кг) со свободным падением ударной части и ударным распыливанием топлива, расширила свою программу выпуском двух новых моделей DE-30B и DE-50B. Новые модели дизель-молотов отличаются технологичностью изготовления, имеют устройства для закрепления непосредственно на шпун­те, что позволяет использовать их при бескопровой бойке. Но­вая конструкция шабота (с пятой, соответствующей профилю забиваемого шпунта) исключает необходимость применения наголовника.

Таблица 2.

Техническая характеристика
трубчатых дизель-молотов моделей DE-30B и DE-50B
-с ударным распыливанием топлива фирмы British Steel Piling (Англия)
Дг.-ЗОЗ ДЕ-50В
Масса ударной части, кг . 1Э60 2260
Потенциальная энергия ударной час­
ти, кгс-м ....... 3731 6219
Частота ударов, удар/мин 47 47
Высота молота, мм ..... 4300 4370
Емкость топливного бака, л . 70,5 92
Расход топлива, л ...... 7,7 12,2
Емкость масляного бака, л . 25 29
Масса молота (сухая) с кошкой, без
наголовника, кг . 3457 4685

Для повышения производительности сваебойных работ фирма BSP создала быстроходные дизель-молоты DA-35A, В-15, В-45 с повышенной частотой ударов.

Дизель-молот модели DA-35Aработает по прин­ципу ударного распыливания топлива, и конструктивно не от­личается от дизель-молотов моделей ДЕ-20, ДЕ-30 со свобод­ным падением ударной части. Рабочий цилиндр молота силь­но оребрен в нижней части. В верхней части установлен пнев­матический буфер, аккумулирующий работу расширения, что позволило снизить высоту подскока ударной части и сократить цикл. Компенсация потери энергии удара от снижения высоты подскока ударной части достигается воздействием на удар­ную часть (при ее ходе вниз) воздуха, сжатого в пневмати­ческом буфере молота (при ходе поршня вверх). На рабочем цилиндре укреплены топливные баки и направляющие для кошки, в зоне которых находится продольная прорезь цилин­дра, через которую происходит зацепление кошки с ударной частью. Молот имеет устройства для соединения со шпунтом и может работать без копровой установки. Этот молот может быть использован и при забивке железобетонных свай.

Кроме того, фирма BSP выпускает новые сваебойные быст­роходные дизель-молоты двух моделей В-15 и В-45 с пневмо-вакуумным буфером. Дизель-молот модели В-15 (рис. 1) состоит из рабочего цилиндра и соединенной с ним направля­ющей трубы большего диаметра, образующих ступенчатый корпус. Внутри корпуса установлены шабот и поршень с ци­линдрическими углублениями на торцах, образующими при соприкосновении сфер поршня и шабота камеру сгорания. На рабочем цилиндре имеются выхлопные патрубки.

Таблица3.

Техническая характеристика
быстроходных дизель-молотов моделей DA-35B, В-15 и В-45
фирмы British Steel Piling (Англия)
DА-35R В-15 В-15
Масса ударной части, кг . 1270 1500 4500
Потенциальная энергия ударной час­
ти, кгс-м . ... . . 3840 3630 10900
Частота ударов, удар/.нин 72 80—100 80—100
Высота молота, мм . 5639 4700 5100
Емкость топливного бака, л . 86 220
Расход топлива, л/ч .... 12,3 9 20
Емкость масляного бака, л . 22 50
Масса молота (сухая), с кошкой, без
наголовника, кг ...... 4767 3820 11 000'

В зоне ка­меры сгорания смонтирован топливный насос высокого дав­ления, приводимый в действие газами, сжимаемыми в рабо­чем цилиндре. Подъем молота и его запуск осуществляется с помощью подъемного устройства, на нижнем конце которого расположен рычажный механизм, взаимодействующий по ме­ре необходимости с ударной частью или с корпусом молота.

Рис. 1. Принципиальная схема быстроходного ди­зель-молота с пневмовакуумным буфером фирмы British Steel Piling (Анг­лия) :

/ — канат управления топ­ливным насосом; 2— шабот, 3 — топливный насос высокого давления; 4 — выхлопной патрубок; 5 — поршень; 6— пневмовакуумный буфер; 7—­рычажный механизм подъ­емного устройства; 8 — подъемное устройство; 9—направляющая труба; 10—ра­бочий цилиндр; 11 — устройство для крепления кпîãðужаемому элементу; 12 — камера сгорания

Высота подъема ударной части изменяется путем изменения величины подачи топлива на один цикл с помощью тросика, соединенного с рычагом насоса. Молот крепится к погружае­мому свайному элементу специальным устройством, которое обеспечивает возможность бескопровой бойки и восприятие реактивного усилия от пневмовакуумного буфера, воздейству­ющего на корпус при подъеме ударной части.

Дизель-молот работает следующим образом. Подъемное устройство опускается вниз и попадает в цилиндрический цен­тральный канал поршня. При этом его рычажный механизм входит во взаимодействие с ударной частью. Для запуска подъемное устройство извлекается, а вместе с ним поднимает­ся и поршень, образуя в полости пневмовакуумного буфера разрежение. В верхней мертвой точке поршень сбрасывается— ударная часть падает и сжимает воздух в рабочем цилиндре;

в буфере сжатия не происходит, так как при ходе поршня вниз открываются клапаны, соединяющие полость буфера с атмос­ферой. Воздух, сжатый в рабочем цилиндре, приводит в дей­ствие топливный насос молота, который через две форсунки впрыскивает топливо в камеру сгорания. В результате сгора ния топлива поршень подбрасывается вверх, а в пневмобуфере возникает разрежение. После достижения верхней мертвой точки поршень начинает двигаться вниз. При движении порш­ня вниз на него действует сила тяжести и усилие, равное про­изведению площади поршня (в зоне пневмовакуумного буфе­ра) на разность между атмосферным давлением и давлением (разрежением) в пневмовакуумном буфере.

Топливная система, используемая в конструкции дизель-молотов моделей В-15 и В-45, запатентована фирмой Ishika-wajima Harima (Япония).

3. НОВЫЕ ДИЗЕЛЬ-МОЛОТЫ фирм KOBE STEEL и ISHIKAWAJIMA HARIMA (Япония)

В пятидесятых годах японские фирмы были крупнейшими изготовителями сваебойных дизель-молотов. Первоначально выпускаемые ими дизель-молоты полностью соответствовали патентам фирмы Delmag (ФРГ). Однако особенности эксплу­атации в странах с жарким климатом привели к необходимо­сти использовать дизель-молоты с водяным испарительным охлаждением. С другой стороны, в Японии раньше, чем в евро­пейских странах, возникла необходимость в создании сверх­мощных дизель-молотов для забивки свай-оболочек большо­го диаметра. Фирмами Японии были созданы тяжелые труб­чатые дизель-молоты с ударной частью массой 6000, 7200 и 15000 кг. При создании тяжелых дизель-молотов выявилось, что традиционная камера сгорания, применявшаяся для удар­ного распыливания топлива, неприемлема,

Рис. 2. Принципиальная схема трубча­того дизель-молота с ударным распыливанием топлива фирмы Kobe Steel (Япония):

/—шабот: 2— компрессионное кольцо; 3 — кольцевая впадина; 4 — рабочий цилиндр; 5— кольцевой выступ; 6— поршень

так как из-за возрастающей скорости истечения топлива возникает кавитация, приводящая сферы поршня и шабота к быстрому износу.

С целью повышения долговечности сфер поршня и шабота фирма Kobe Steel разработала дизель-молот с камерой сго­рания нового типа (рис. 2)

Молот состоит из шабота с кольцевой впадиной, соприка­сающейся при ударе с кольцевым выступом поршня. Топли­во подается не в центр сферы, как у всех трубчатых дизель-молотов с ударным распыливанием топлива, а в кольцевую впадину. Из кольцевой впадины топливо выбрасывается в ка­меру сгорания, образуемую при ударе стенками рабочего ци­линдра, выступами поршня и шабота. В камере сгорания топ­ливо самовоспламеняется и сгорает, подбрасывая поршень на расчетную высоту.

В связи с тем, что истечение топлива начинается не от центра, а из кольцевой впадины, длина сферического канала сокращается, соответственно сокращается и скорость истече­ния топлива, так как время действия удара не изменяется. Вероятность возникновения кавитационных раковин на сфери­ческих поверхностях поршня и шабота снижается.

Недостатком данной конструкции является необходимость высокой точности изготовления кольцевого сферического уг­лубления в шаботе и выступа на поршне для обеспечения кон­такта при соударении шабота и поршня по всей поверхности.

Другим существенным недостатком является невозмож­ность равномерного распыливания топлива по всему объему камеры сгорания, поскольку топливо подается насосом в одну точку сферического углубления на торце шабота и не успевает до удара равномерно растечься по всему кольцу. Поэтому в зоне камеры сгорания, близкой к месту подачи топлива, смесь топлива с воздухом будет переобогащенная, а в противополож­ной зоне — обедненная. Еще больше увеличивается неравно­мерность распределения топлива по объему камеры сгорания при забивке наклонных свай. Все это приводит к снижению среднего эффективного давления и, следовательно, высоты подскока ударной части (при данном объеме рабочего ци­линдра).

В настоящее время трубчатые дизель-молоты фирмы Kobe Steel выпускаются с камерой сгорания описанной конструк­ции.

Фирма Ishika-wajima Harima создала новую топливную си­стему, сочетающую преимущества ударного и форсуночного распыливания (рис. 3).

На стенке рабочего цилиндра 2 в зоне камеры сгорания, образованной поршнем 3 и шаботом 1, укреплен топливный насос 4, внутренняя полость которого соединена с камерой сгорания каналом 5. В корпусе насоса, состоящем из трех отдельных частей 6, 9, 11, соединенных между собой в одно целое, смонтирован поршень 7 с компрессионными кольцами. воздействующий на толкатель 8, подвижно установленный в средней части корпуса. Подвижная втулка 10, расположенная в верхней части 11 корпуса с одной стороны прижимается пружиной 12 к торцу толкателя 8, а с другой — к торцу плун­жера 13 топливного насоса, сопряженного со втулкой 14.

Топливо по топливо проводу 18 подается в полость 21, а за­тем через отверстия 20 попадает в подплунжерную полость 15. Клапан 16, прижимаемый пружиной 19 к седлу наконечника, отсекает напорный трубопровод от подплунжерной полости. Напорный трубопровод с помощью накидной гайки крепится к корпусу игольчатой форсунки. Форсунка состоит из корпуса 22 и наконечника 25. В корпусе установлена игла 30, прижима­емая к седлу наконечника 25 пружиной 23. Полость 26 соеди­нена каналом 24 с напорным трубопроводом. Коническая часть 29 иглы 30 отделяет полость 26 от форсуночной полости 27 и сопловых отверстий 28 форсунки.

Молот и его топливная система работают следующим об­разом.

При ходе поршня вниз воздух в рабочем цилиндре 2 сжи­мается: сжатый воздух по каналу 5 поступает во внутреннюю полость насоса и давит на поршень 7, толкатель 8 и плунжер 13. В момент, когда усилие от давления газа становится боль­ше усилия пружины 2, плунжер начинает двигаться, откры­вает клапан 16 и по трубопроводу 18 подает топливо к двум форсункам 22, расположенным в зоне камеры сгорания, друг против друга. При этом топливо по каналам 21 и 24 попадает в полость 26 и, воздействуя на торец иглы 30, сжимает пружи­ну 23, открывая доступ топлива в полость 27, откуда оно через сопловое отверстие 28 попадает в камеру сгорания, где само­воспламеняется и сгорает. Поршень 3 подбрасывается про­дуктами сгорания вверх на расчетную высоту. При ходе пор­шня 3 вниз продувается рабочий цилиндр и сжимается воз­дух в рабочем цилиндре. Далее цикл повторяется.

Рис 3. Принципиальная схема дизель-молота фирмы Ishikawjima Harima (Япония):

/ — шабот 2 — рабочий цилиндр; 3 — ударная часть; 4 — топливный насос; 5, 24—канал;

6—нижняя часть корпуса насоса; 7 — поршень; 8 — толкатель, 9 — средняя часть корима корпуса топливного насоса; 10—подвижная втулка; 11 — верхняя часть корпуса топ­ливного насоса, 12, 23 — пружина; 13— плунжер; 14 — втулка; 15 — подплунжерная полость 1Ь — клапан- 17 — топливопровод; 18— напорный топливопровод; 19—пружина,20 - отверстия, 21, 26, 27 — полость; 22 — корпус форсунки; 25 — наконечник;26—сопловое отверстие; 29 — коническая часть иглы; 30— игла.

Следует отметить, что топливо подается только в процессе сжатия, так как к моменту начала самовоспламенения рабочий ход плунжера уже исчерпан и поршень 7 садится своей юбкой на среднюю часть 9 корпуса насоса. Пневмопривод и подбор жесткости пружины 12 позволяет обеспечить подачу топлива незадолго до удара или даже в момент удара, как и у дизельных молотов с ударным распыливанием топлива. По­этому усилие взрыва воздействует на погружаемую сваю в момент или после ударного импульса, увеличивая эффект по­гружения.

Данная топливная система обеспечивает высокие пусковые качества дизельных молотов при их запуске и большой осад­ке сваи. Это объясняется тем, что подача и самовоспламене­ние топлива происходит и в том случае, если соударения пор­шня и шабота не происходит.

К недостаткам этой топливной системы относится повы­шенная сложность изготовления, а также ненадежность рабо­ты из-за расположения насоса в зоне высоких температур.

Другой недостаток по сравнению с ударным распыливани­ем топлива заключается в том, что давление конца сгорания в этом случае будет ниже, соответственно снизится и эффек­тивность погружения сваи. Это объясняется тем, что в камеру сгорания при ударном распыливании топлива подается вся доза топлива за время, близкое к времени действия удара, а в данном случае топливо подается в течение значительно боль­шего времени. При этом ранее поданная часть топлива начи­нает гореть раньше, что приводит к затяжке процесса горения и,


29-04-2015, 04:15


Страницы: 1 2
Разделы сайта