Радиопротекторы

%) уменьшали частоту радиомутаций на стадии сперматид. Однако, по данным некоторых работ, стрептомицин не способен защищать зародышевые клетки дрозофилы от воз­никновения радиомутаций. В этих работах приме­нялись инъекции препарата в близких концентрациях самцам дрозофилы перед облучением их одинаковой дозой 1000 Р и исследовался один и тот же тест - частота рецессивных сцеп­ленных с полом летальных мутаций на всех стадиях спермато­генеза дрозофилы. Кроме того, в одной работе стрептомицин скармливался с питательной средой, но и этот метод не выявил способности препарата уменьшать частоту индуцированных облучением мутаций.

Влияние антибиотиков на генетический эффект облучения у млекопитающих впервые было изучено в работе Щао Вэй Ван, Ду Гул, Чтом Хань. Стреп­томицин в низких концентрациях (0,5-1 мг/мышь) вызывал уменьшение индукции хромосомных перестроек в половых клетках в среднем на 50 %, а в более высоких (3-5 мг/мышь) был неэффективным в защите от радиомутаций и повысил час­тоту спонтанных мутаций.

Хлорамфеникол и митомицин С исследовались на мышах. В результате исследований установлено, что хлорамфе­никол повышает выход ДЛМ в сперматозоидах более чем на 50 %, не влияя на радиочувствительность сперматид и не ока­зывая мутагенного действия. В то же время митомицин С ока­зался мутагеном для всех стадий сперматогенеза и проявил выраженный синергический эффект в сперматоцитах. Посколь­ку митомицин является ингибитором биосинтеза ДНК, было предположено, что синергический эффект в сперматоцитах является следствием взаимодействия ионизирующей радиа­ции и митомицина во время синтеза ДНК. Показано так­же, что внутрибрюшинные инъекции митомицина С увеличи­вают частоту индуцированных облучением мутаций специфи­ческих локусов в сперматогониях мышей.

Митомицин С исследовался и на дрозофиле. Результа­ты показали, что сам антибиотик вызывает высокую частоту мутаций на всех стадиях сперматогенеза. Примененный же перед облучением, митомицин проявляет аддитивное дейст­вие. Однако на стадиях поздних сперматид и ранних сперма-тоцитов суммарная часть мутаций уменьшается, а на стадии сперматогониев увеличивается. На основании этого автором сделан вывод, что снижение уровня радиомутаций под влия­нием митомицина С, как и актиномицина Д, на стадиях спер­матид и сперматоцитов является следствием ингибирования репликации ДНК.

Интересно, что полученный при исследовании митомици­на С противоположный результат (синергический эффект на стадии сперматоцитов) автор одной работы также объяснял спо­собностью данного антибиотика ингибировать биосинтез ДНК. В этом случае синергический эффект, по мнению автора, явля­ется следствием взаимодействия ионизирующей радиации и митомицина во время синтеза ДНК. При дальнейшем исследо­вании митомицина С было обнаружено, что он снижает частоту частичных видимых мутаций в 12 локусах, но не влияет на выход полных мутаций такого типа.

Результаты, полученные при испытании антибиотиков в качестве возможных протекторов против генетического дей­ствия облучения, трудносопоставимы, так как в большинстве исследований применялись различные методики и, в частно­сти, разные генетические тесты. Но даже в тех редких случаях, когда условия эксперимента были достаточно однородными, результаты оказывались разными (табл. 2,3).

ФЕНОЛЫ

Первые исследования влияния кислорода на гене­тическую радиочувствительность половых клеток показали, что облучение в кислороде повышает частоту радиомутаций, в то время как аноксия оказывает явное защитное действие. В дальнейшем была тщательно изучена роль кисло­рода и азота в радиационном поражении клеток, находящихся на различных стадиях сперматогенеза у дрозофилы.

Возможность изменения радиочувствительности зароды­шевых клеток под влиянием таких факторов, как гипоксия или облучение в кислороде, явилась предпосылкой для иссле­дования некоторых химических соединений - модификаторов метаболизма.

Так, в 1961 г. появилась работа, в которой сообщалось об исследовании ДНФ. Это вещество разобщает дыхание и окис­лительное фосфорилирование, не прерывая транспорта элект­ронов в дыхательной цепи. При введении ДНФ личинкам дро­зофилы двумя способами (скармливание и инъекции) была уменьшена частота рецессивных летальных мутаций, трансло­каций и нехваток, индуцируемых облучением в дозе 1000Р в сперматоцитах. В среднем защитный эффект составлял от 50 до 80 %.

Аналогичный эффект, хотя и меньший в количественном отношении, получен в другой работе при исследовании влияния ДНФ. Работа проведена также и на дрозофиле, препарат инъе­цировали в той же концентрации, изучались также спермато-циты, облученные в такой же дозе 1000 Р. Однако Стегер иссле­довал частоту ДЛМ и получил уменьшение этого типа радио­мутаций на 12 %.

Этот препарат исследовала Абелева Э.А. для выяснения вопроса, не влияет ли он на зрелые половые клетки дрозофилы. Ока­залось, что ДНФ эффективно защищает сперматиды (частота ре­цессивных летальных мутаций снижается на 30 %), но не защи­щает спермии. Однако в работе Иващенко Н.И. защита спермиев была осуществлена с помощью инъекции 2,4-динитрофенола, причем при увеличении концентрации препарата от 0,15 до 0,30 мкг на муху эффективность защиты увеличивалась с 30 до 50 % . При дальнейшем увеличении концентрации до 0,45 мкг защит­ный эффект не был обнаружен. Интересно отметить, что ДНФ в концентрации 0,30 мкг на муху оказал защитное действие не только на спермии, но и на радиочувствительные стадии -сперматиды и сперматоциты.

Таким образом, согласно работе Иващенко Н.И. эффективность ДНФ меняет­ся в зависимости от его концентрации. Поэтому отсутствие за­щиты спермиев в работе Абелевой Э.А. отнюдь не противоречит полу­ченным позднее результатам. Сравнивать эти работы трудно, несмотря на один и тот же объект исследования, одинаковые тесты и дозы облучения. Дело в том, что Иващенко Н.И. использовал инъекции препарата в строго определенной кон­центрации - от 0,06 до 0,45 мкг на муху, в работе же Абелевой Э.А. пре­парат скармливался с питательной средой в концентрации 0,5 мг/мл среды, что не дает сведений о количестве препарата, поступившего в организм дрозофилы.

Тем не менее в работах, выполненных по сходным методи­кам, получены аналогичные результаты. Во всех этих исследо­ваниях показано, что 2,4-динитрофенол защищает от мутагенного действия облучения радиочувствительные стадии дрозо­филы, а в работе Иващенко Н.И., кроме того, получено снижение частоты радиомутаций в спермиях.

Исключение составляет работа, выполненная также на дрозофиле, в которой ДНФ оказался неэффективным. Таким образом, некоторые фенолы, такие, например, как ДНФ, спо­собны защищать половые клетки дрозофилы от мутагенного действия ионизирующей радиации (табл. 2.4). К сожалению, в литературе нет сведений о влиянии этого препарата на гене­тический эффект облучения у млекопитающих.

Противопоказанием применения ДНФ в качестве радиопро­тектора служит его метаболическая активность, поскольку ве­щество препятствует окислительному фосфорилированию и является ассимиляторным ядом, так как может заменить' нор­мальное вещество в физиологических реакциях благодаря хи­мическому сходству с ним. Поскольку проводившиеся более 20 лет (с 1953 по 1975 г.) исследования показали, что тра­диционные радиопротекторы малоэффективны в защите поло­вых клеток животных от мутагенного действия облучения, поиски антимутагенных препаратов были перенесены в дру­гую область. Внимание исследователей привлекли природные соединения, представляющие интерес по двум причинам. Во-первых, известно, что некоторые виды живых организмов об­ладают высокой радиоустойчивостью. Следовательно, внутри организма существуют какие-то факторы резистентности. По­скольку в живой природе можно обнаружить такие совершен­ные формы и реакции, которые-намного превосходят приду­манные человеком аналоги, то поиски веществ, „созданных" эволюцией для защиты организма от облучения, могут быть весьма перспективными.

Во-вторых, естественные вещества для организма, даже будучи использованы в больших концентрациях, чем в норме, окажутся менее токсичными по сравнению с синтезированны­ми искусственно.

Все это побудило исследователей обратиться к таким со­единениям, как ДНК и ее предшественники, АТФ и т. д.


ВЕЩЕСТВА ЕСТЕСТВЕННОГО ПРОИСХОЖДЕНИЯ

В первых работах по изучению предшественников ДНК было показано, что предварительное воздействие нуклеозидов уменьшает частоту радиационно-индуцированных сцеп­ленных с полом рецессивных летальных мутаций в постмейо-тических клетках дрозофилы. Обработка же предмейотических клеток галогеновыми производными пиримидина (5-бромдиоксиуридином и 5-бромдиоксицитидином) увеличи­ла частоту рецессивных летальных мутаций, но не повлияла на выход транслокаций в сперматогониях дрозофилы.

Иссле­довалось влияние препаратов ДНК на мутагенный эффект ионизиру-ющей радиации в половых клетках самцов мышей. Анализировались частота ДЛМ в пост-мейотических клетках и частота реципрокных транслокаций в сперматогониях. Под влиянием ДНК частота доминантных деталей в ранних сперматидах уменьшилась с 67,0 до 62,1 %. В поздних, наоборот, наблюдалось усиление мутагенного эф­фекта облучения. В сперматогониях частота транслокаций так­же возросла с 4,4 до 5,8 %. Более эффективным оказалось ис­пользование АТФ в смеси с радиопротекторами. Сообщается о защитной эффективности смеси АТФ с ацетуроном и АЭТ против индукции облучением транслокаций в сперматогониях мышей.

При применении АТФ в смеси с метионином и цистеином получено снижение выхода рецессивных сцепленных с полом летальных мутаций, индуцированных облучением у дрозофи­лы.

Хороший защитный эффект против генетических повреж­дений, вызванных облучением у мышей, был показан при ис­пользовании АТФ. Влияние смеси АТФ, АЭТ и серо-тонина, вводимой самцам внутрибрюшинно за 8 мин до облу­чения в дозе 400 Р, изучалось в соотношении 45:3:1. Частота индуцированных реципрокных транслокаций в сперматогониях мышей при этом снизилась примерно в 2 раза (с 8,65 ± 1,2 до 4,05 ± Ц,6 %). При исключении АТФ из смеси наблюдалась лишь тенденция к снижению частоты мутаций. В отсутствие облуче­ния АТФ снижал в 2'раза выход транслокаций, индуцирован­ных смесью АЭТ и серотонина (статистически недостоверно из-за малых величин).

Интересно, что при защите мышей от лучевой гибели вклад АТФ незначителен - защитное действие смеси АТФ + АЭТ + се-ротонин и смеси АЭТ + серотонин одинаково. Таким образом, эти исследования показали, что радиопротекторы АЭТ и серо­тонин, снижающие смертность облученных животных, малоэф­фективны против генетического действия радиации и для за­щиты от индуцированных облучением мутаций могут исполь­зоваться вещества, малоспособные повышать выживаемость облученных животных.

Внимание исследователей привлекла антимутагенная ак­тивность а-токоферола (витамина Е). Это соединение оказалось способным подавлять мутагенез, вызываемый химическими и физическими мутагенами, вирусами, старением и т. д. Исследовалась радиозащитная эффективность а-токоферола в половых клетках. Самцов дрозофилы, выращенных на среде с витамином Е, облучали рентгеновским излучением и через 24 ч скрещивали с виргиль-ными самками тесторной линии. При этом, если самки выращи­вались на нормальной питательной среде, снижение выхода ре­цессивных летальных сцепленных с полом мутаций не обнару­живалось. Если же не только самцы, но и самки вскармлива­лись питательной средой с токоферолом, то частота индуциро­ванных облучением мутаций значительно снижалась. Авторы предположили, что а-токоферол не влияет на образование пер­вичных радиационных эффектов, но модифицирует репарацию предмутационных повреждений, возникающих в зрелых поло­вых клетках самцов и репарируемых после оплодотворения ферментами самки.

Большое внимание уделяется исследованию антимутагенного действия различных растений. Многочисленные позитив­ные результаты, полученные при испытании антимутагенного действия растений, вызвали интерес к растительным экстрак­там и у радиобиологов. В частности, исследовалось влияние фитонцидов чеснока и вытяжки из листьев эвкалипта на мута­ционный процесс, индуцированный ионизирующей радиацией у дрозофилы. Показано, что использование чеснока не изменило индукции облучением рецессивных летальных мута­ций и транслокаций между II и III хромосомами, а вытяжка из эвкалипта оказала хорошее защитное действие против гене­тического эффекта т- лучей.

Таким образом, поиски эффективных противолучевых ан-тимутагенов продолжаются. Необходимо, чтобы они удовлет­воряли трем критериям:

1) стабильности,

2) эффективности

3) нетоксичности.

Однако ни один из известных нам радиопро­текторов не удовлетворяет данным критериям. Так, большинство традиционных радиопротекторов, имеющих стабильную химическую структуру, эффективны лишь в высоких токсич­ных концентрациях, а вытяжки растений практически неток­сичны, но не имеют стабильной химической структуры. Все это требует дальнейших теоретических и экспериментальных ис­следований с целью поисков оптимальных радиозащитных препаратов.

БИОЛОГИЧЕСКАЯ РОЛЬ МЕЛАНИНОВЫХ ПИГМЕНТОВ

Меланины представляют собой конденсированные фенольные соединения. Они присутствуют в тканях растений, животных и многих микроорганизмов. В организме человека этот пигмент придает окраску волосам, бровям, ресницам, ра­дужной оболочке глаза, коже. В коже животных и человека присутствие и новообразование меланина представляет собой защитную реакцию организма на действие ультрафиолетового излучения.

Под влиянием ультрафиолета интенсифицируется процесс образования меланина из тирозина и других мономеров (за­гар - защитная реакция организма на воздействие солнечных лучей). Возникновение черной кожи у человека при продви­жении первоначальной белой расы в тропические районы про­изошло, по мнению Ленграйджа, в результате отбора мно­гих мелких мутаций, обусловливающих формирование все бо­лее и более темной кожи, что имеет большое адаптивное зна­чение в этих районах.

Образование меланина в организме придает ему устойчи­вость не только к ультрафиолету, но и ионизирующей ра­диации.

Так, у многочисленных видов микроскопических грибов, актиномицетов и некоторых бактерий бурые и черные мелани-новые пигменты служат защитой от жестких электромагнит­ных излучений и являются основной причиной высокой устой­чивости пигментированных микроорганизмов не только к ультрафиолетовому (в том числе и коротковолновому), но и к рентгеновскому излучению.

Штаммы микроорганизмов, содержащих меланиновые пиг­менты, настолько устойчивы к действию солнечного ультра­фиолета и космических лучей, что живут и размножаются в высоких слоях атмосферы, горах, пустынях, Арктике и Антарк­тике - там, где другие микроорганизмы погибают. Меланин в определенных условиях увеличивает выживание даже после абсолютно летальной дозы (ЛД100 ) радиации.

Повышение естественного радиоактивного фона, обуслов­ленное применением радиоактивных веществ, нарушением хранения радиоактивных отходов и т. д., способствует преиму­щественному развитию темнопигментированных грибов, неко­торые из них выживают после облучения почвы дозой 6400 Гр. Имеются сведения о преимущественной встречаемости меланинсодержащих видов грибов в почвенных образцах, ото­бранных после взрыва атомной бомбы в районе атолла Би­кини.

В ряде работ показана повышенная радиоустой­чивость черных мышей, а также появление гиперпигментации у белых и серых в результате продолжительного облучения их малыми дозами гамма-лучей.

При сравнении выживаемости гамма-облученных белых и чер­ных штаммов дрожжей также выявлены различия, обуслов­ленные присутствием в клетках черного пигмента меланиновой природы. Клетки трансплантируемой меланомы хо­мячка, содержащие меланин, в 2 раза более устойчивы к ле­тальному действию радиации, чем такие же клетки, лишен­ные пигмента.

По данным одной работы, облучение аксолотлей дозами 500, 1500,3000 Р стимулировало процесс меланизации в печени, го­лове и глазах. Автор указывает, что такая гиперпигментация является защитной реакцией организма на облучение. Анало­гичные данные получены и при облучении гипофиза лягушки гамма-лучами: усилилось образование меланинов в меланофорах кожи вследствие выделения интермедина из средней доли ги­пофиза и изменения обмена тирозина. В первые часы по­сле облучения в тканях облученных животных наблюдается усиление окисления тирозина.

Меланины животного происхождения способны взаимо­действовать со многими радиоактивными элементами: цезием, радием, кобальтом, рутением, стронцием, торием, а также с ра­диоактивными изотопами цинка, кадмия, свинца, хрома, мар­ганца и железа. Было установлено, что меланин эффек­тивно сорбирует ионы различных металлов. Таким же об­разом меланины грибного происхождения сорбируют ионы Pb, Th, Hg, La, Zn, Cz. По-видимому, аналогичные свойства животного меланина ответственны за преимущественное на­копление 226 Ra в пигментированных тканях животных, а также в меланоме. Если в среде концентрация 226 Ra в пегментарных тканях животных, а также меланоме. Если в среде концентрация 226 Ra со­ставляет 25,1 Ки/кг, то в меланоме накапливается до 40-360 Ки/кг.

Как отмечал Н. И. Вавилов, в центрах формообразования растений (центры происхождения растений – по Н.И.Вавило­ву) преобладают сильно пигментированные формы. Отбор че­ловеком светлоокрашенных форм растений при продвижении их культуры в более северные районы означает, по мнению Щербакова, отбор форм, менее защищенных от мутагенных факторов по сравнению с пигментированными дикорасту­щими формами.

Очевидно, не случаен тот факт, что ткани растений, окру­жающие генеративные ткани, окрашены пигментами, которые, вероятно, должны обеспечивать их защиту от мутагенов. На­личие форм с высоким содержанием пигмента характерно для высокогорных областей с повышенным уровнем ультрафиоле­товой радиации и космических лучей.

В ряде экспериментов были сделаны попытки использо­вать меланин для усиления биологической радиорезистентности. В одной работе из гриба Pullularia prototropha было выделе­но четыре фракции меланина, различающиеся растворимостью в щелочи и этаноле. Две из них оказывали защитное действие при облучении мышей рентгеновским излучением и увеличи­вали среднюю продолжительность жизни мышей в 1,5 раза. До­бавление меланина в питательную среду существенно повыша­ло выживаемость облученных культивируемых клеток соеди­нительной ткани мышей, а внутрибрюшинное введение меланина белым мышам до облучения их в дозе 800 Р, кроме того, значительно увеличивало и продолжительность жизни.

Сведения о влиянии меланина на мутагенное действие ра­диации до начала наших исследований отсутствовали. Однако установлено, что фенолы могут связываться с ДНК, в частно­сти с тимином. Радиационное повреждение ДНК как раз и начинается с тимина, а меланин способен не только улавли­вать и обезвреживать свободные радикалы, но и регулировать концентрацию неспаренных электронов. Кроме того, для ряда фенолов (Na-галлат, пропилгаллат, кумарины и катехи-ны) показана антимутагенная активность. В качестве одной из гипотез, объясняющих их антимутагенную способ­ность, предполагается взаимодействие фенолов с функцио­нальными группами ДНК, которое может экранировать важ­ные участки ДНК от действия мутагена или отводить избы­точную энергию. Это послужило предпосылкой для ис­следования способности меланина защищать наследственные структуры организма от индукции радиационных мутаций.

ПРИЛОЖЕНИЕ

Таблица 2.1

Влияние серосодержащих радиопротекторов на мутагенный эффект облучения

Объект исследования Концентрация Время введения вещества до облучения, мин Доза облучения, Р Исследованные тесты Стадии сперматогенеза Полученный результат
b-АЭТ
Дрозофила 0,15-0,30 g 0 4000

РЛМ

ДЛМ

Усиление
0,1 мл 10 3000 РЛМ Все стадии >>
0,1% 5-10 3000 >> То же >>
0.3g 2000 >> >> Нет эффекта

0.5%

(скармливание)

1000 >> >> защита
Мыши 8 мг/мышь 10 1200 ДЛМ Спермии, сператиды, сперматогонии

>>

нет эффекта

то же

50 мг/кг 15 400 ДЛМ

Спермии

сперматиды

>>

защита

9 мг/мышь 15-20 600 >>

Сперматиды

Остальные стадии

Защита

Нет эффекта

5 мг/мышь 10-15 100 Хромосомные перестройки сперматоциты защита
200 То же >> усиление
0,3 мг/г 10-15 400 ДЛМ >> защита
Остальные стадии Нет эффекта
Крысы Не указана 600 >> То же
Кролики 0,1-0,001% 30 800 >> спермии >>
АЭМ
Мыши 0,25 мг/г 30 500 ДЛМ Нет эффекта
Цестеамин
Дрозофила 0,25 g 15 2400 РЛМ То же
ДЛМ >>
0,4 и 1 g 2000 РЛМ сперматиды усиление
Остальные стадии Нет эффекта
Транслокации Все стадии То же
делеции сператиды усиление
прочие Нет эффекта
Потеря Х- и Y-хромосом сперматоциты усиление
Остальные стадии Нет эффекта
ДЛМ постмейотические усиление
предмейотические Нет эффекта
0,5 g 1500 РЛМ Все стадии То же
1,5 % 1000 РЛМ То же >>
0,25 g 2000 >> постмейотические >>
транслокации >> >>
Тутовый шелкопряд 0,01 % 0 4215 ДЛМ >>
8430 видимые >>
Мыши 4 мг/мышь 4-7 500 ДЛМ Все стадии >>
4 мг/мышь 15 600 >>


29-04-2015, 04:11
Страницы: 1 2 3 4
Разделы сайта