При використанні способу послідовних наближень враховують ту обставину, що планети рухаються наближено по незбурених еліптичних орбітах, тому за законами Кеплера можна обраховувати їхні наближені положення на будь-який момент. Враховуючи приблизне взаємне розташування всіх чи окремих планет, можна знайти сили взаємного тяжіння і обумовлені ними прискорення планет для кожного моменту. Ці додаткові прискорення від Сонця будуть збурюючими прискореннями. Вони визначають не самі траєкторії руху, а їхні відхилення від еліптичних орбіт. За цими збурюючими прискореннями можна знайти і збурення для кожного моменту часу. Це будуть збурення, знайдені в першому наближенні, або збурення першого порядку. Врахування збурень першого порядку надає можливість обчислити для кожної планети на будь-який момент нові положення в просторі (перше наближення). Ці нові наближені положення будуть більш точними в порівнянні з обчисленими за формулами еліптичного руху. Надалі, враховуючи більш точне взаємне розташування планет на кожний момент із першого наближення, знову знаходять взаємне притягання і збурюючі прискорення, а потім і самі збурення. Знайдені збурення в другому наближенні будуть точнішими за збурення першого порядку. Після врахування останніх знаходять положення планет ще точніше (друге наближення). В такий спосіб можна обчислити збурення третього порядку і т.д. Практична цінність аналітичних теорій руху зводиться не тільки до обчислення видимих положень небесних тіл, а й до можливості дослідити характер взаємного впливу планет та інших небесних об'єктів, а також до можливості обрахувати їхні маси.
З 50-х років XXст. почали інтенсивно розвиватися так звані чисельні теорії руху планет. Цьому сприяло створення та нарощування потужності сучасних електронно-обчислювальних машин. Основна відмінність чисельних теорій полягає в тому, що за їхньою допомогою одержують не формули для визначення збурень в залежності від часу, а лише певні числа, які фіксують положення небесного тіла в просторі на вибрані моменти часу. Пояснимо суть використання чисельних методів для створення теорій руху небесних тіл.
Якщо небесні тіла притягаються за законом Ньютона і якщо для кожного тіла відомі в початковий момент to положення і швидкість, то легко знайти сили, з якими тіла діють одне на друге, а також прискорення, які вони надають одне другому в початковий момент. Тепер виберімо момент ty , близький до t 0 , і приймемо, що за інтервал часу At - t - ί$ прискорення не змінюється. Тоді за формулами рівноприскореного руху для кожного тіла розраховують відхилення від рівномірного і прямолінійного руху за час Δ/, а також положення і швидкість в момент t . За новими положеннями тіл знову можна обрахувати діючі сили між ними і прискорення в t. Надалі визначаються положення і швидкості для наступного близького моменту t2 і т.д. В такий спосіб послідовно, крок за кроком, можна обчислити і скласти таблицю положень тіл на моменти t, t2 , t$,... , тобто побудувати чисельну теорію руху на певному інтервалі часу.
Основним недоліком чисельних теорій руху є те, що для їхнього створення уже необхідно знати точні маси досліджуваних небесних тіл і повні відомості про величини і характер їхнього притягання.
Крім того, при чисельних розрахунках одержують безпосередньо збурення, а не залежності між цими збуреннями і величинами, які пов'язані з масами, елементами орбіт і іншими властивостями збурюючих тіл і їхніх рухів.
Тому без наявності аналітичних теорій руху, можливо, не знали б маси Венери і Меркурія, не змогли б відкрити "па кінчику пера" планети Нептун, Плутон і т.д. Чисельні методи не дозволяють ефективно вивчати також загальні властивості руху небесних тіл. Ось тому зараз чисельні й аналітичні теорії руху поєднуються і створюються чисельно-аналітичні теорії руху. Загалом, чисельні теорії не можуть замінити аналітичні, проте вони широко розповсюджені і мають велику практичну цінність.
Сучасні теорії руху небесних тіл
Серед найбільш досконалих аналітичних теорій руху необхідно згадати планетні теорії Левер'є, створені в 50-60-х pp. минулого століття. Вони мають вигляд таблиць, в яких положення Сонця і семи великих планет (крім Плутона) відносно Землі подані в залежності від часу. Згодом з'ясувалося, що розбіжність положень, обчислених за теоріями Левер'є і нових спостережень почала збільшуватись, зокрема це найбільше стосувалось Юпітера і Сатурна. В зв'язку з цим американський астроном Хілл в 1895 р. побудував також аналітичні теорії руху Юпітера і Сатурна, проте і вони не усунули розбіжності теорій і спостережень. Тому Гайо в 1913 р. здійснив уточнення теорії і довів розбіжність до розмірів похибок спостережень. Поліпшені теорії Левер'є були основними в астрономії до початку XX ст., а для зовнішніх планет використовувались ще тривалий час в першій половині XXст. В 1895-1898 pp. Нюкомом були опубліковані нові аналітичні теорії руху Меркурія, Венери, Землі, Марса, Урана і Нептуна теж у вигляді таблиць. Вони базувались на положеннях, спостережених на всіх обсерваторіях світу з 1750 р. по 1892 p.: 40000 положень для Сонця, 5400 положень і 4 проходження по диску Сонця для Меркурія, 12000 положень і 2 проходження по диску Сонця для Венери, 4000 положень для Марса. Проте і тут не обійшлось без несподіванок. Спостереження Марса в опозицію 1902-1903 pp. розбігались з теорією на 3", а в опозицію 1905 р. - вже на 6". Як згодом з'ясував Росе, причиною розбіжності теорії і спостережень було помилкове на 0.7" значення ексцентриситету, прийняте Нюкомом для обчислень. Тому Росе ввів поправки до Нюкомової теорії для Марса. Пізніше ще вносились деякі уточнення в теорії Нюкома, з якими вони і використовувались для внутрішніх планет аж до 80-х років XXст. Що стосується теорій руху зовнішніх планет, то вони були менш точними. Ось тому вже в 50-х роках XX ст. теорії Нюкома для Юпітера, Сатурна, Урана, Нептуна були замінені чисельними теоріями, побудованими Еккертом, Брауером і Клеменсом шляхом чисельного інтегрування диференціальних рівнянь руху. У 80-х роках астрономи перейшли на використання чисельної теорії руху планет DE200, а в 1997 р. Міжнародним астрономічним союзом рекомендовані ще більш досконалі чисельні теорії руху планет DE403.
Першу наближену теорію руху Місяця створив Ейлер ще в 1722 р. Через 100 років Хілл розвинув ідеї Ейлера, і були закладені найбільш точні, теоретичні основи для обчислення положень Місяця. Найдосконаліша аналітична теорія руху Місяця створена Брауном і опублікована в 1919 р. Це був результат майже 30-річної праці Брауна, який, по суті, продовжив та розвинув надбання Хілла. Відтоді теорія руху Місяця неодноразово уточнювалась. Спочатку в 1960 р. теорія Брауна була поліпшена за рахунок введення в середню довготу Місяця емпіричної нерівності 8.72" - 26.74"Г - 11.227", пояснення якої до цього часу було проблематичним. Надалі після 1971 р. була виправлена помилка в 182 членові місячної теорії Брауна і був здійснений перехід на систему астрономічних сталих МАС 1964 р. Нарешті, було здійснене ще одне поліпшення теорії, яке зводиться до заміни співвідношень Брауна для збурень від Сонця співвідношеннями Еккерта. Загалом, теорія руху Місяця за Брауном подається у вигляді тригонометричних рядів із складним аргументом, який залежить від часу, вікових і періодичних збурень. Ряди налічують понад 1650 членів. Щоб обчислити, наприклад, довготу Місяця з точністю до 0.1", необхідно скласти 655 членів. Проте необхідно зауважити, що точність 0 1" є лише точністю обчислень, а справжня розбіжність обчислених і спостережених положень Місяця в багато разів більша. В останні десятиріччя замість теорії Брауна набули поширення чисельні теорії руху Місяця DL200 і DL403, кожна з яких вводилась одночасно з DE200 і DE403.
Як же оцінюється сучасний стан теорій руху планет і Місяця? Найбільш оптимальним критерієм досконалості теорій руху планет, їхніх супутників, астероїдів і комет вважається узгодженість обчислених і спостережених положень на коротких (десятки і сотні років) та історично тривалих (тисячі і сотні тисяч років) інтервалах часу. Перш за все, ця узгодженість залежить від точності врахування періодичних і вікових збурень.
Періодичні збурення характеризують відхилення від руху по еліптичних орбітах в одну або іншу сторону. Для планет періодичні збурення порівняно невеликі. Зокрема, найбільші видимі відхилення на небі від еліптичного руху становлять для Меркурія біля 15", Венери - 30", Землі - Г, Марса - 2', Урана - З', Нептуна - 1.5', а для масивних планет Юпітера і Сатурна відхилення сягають 28' і 48'. При порівнянні сучасних аналітичних і чисельних теорій руху планет з даними спостережень з 1800 р. по теперішній час мають місце розходження періодичного характеру не більше декількох секунд. Це свідчить про те, що наявні теорії руху придатні для користування на інтервалі 100-200 років. За цей час елементи орбіт будуть змінюватись у відповідності з тими формулами, які покладені в основу теорій. Чи будуть елементи змінюватись надалі так - невідомо.
Вікові збурення регулярно збільшують відхилення від незбуреного руху. З їхнього аналізу можна впевнитись в зміні деяких елементів орбіт планет до таких величин, які є нереальними. Наприклад, для Венери розрахований ексцентриситет орбіти за теорією Левер'є через 20 тисяч років набуде від'ємного значення. Проте він не може бути меншим нуля. На коротких інтервалах часу теж відомі факти неузгодженості аналітичних теорій руху планет і спостережень до 1". Зокрема, час від часу в публікаціях з'являються повідомлення про додаткові вікові зміни довгот перигеліїв і вузлів орбіт деяких планет, не знайдено пояснення так званого непрецесійного руху рівнодення біля 1" в століття та інше. Це невеликі відхилення, але вони є свідченням про необхідність уточнення теорій руху тіл Сонячної системи.
Найбільші ускладнення виникають при створенні теорій руху супутників планет, зокрема Місяця. Це пояснюється необхідністю досконалого знання гравітаційної фігури та внутрішньої будови планет, які мало вивчені. Для Місяця проблема створення теорії руху ускладнюється ще й близьким розташуванням його відносно Сонця, яке є масивним тілом і суттєво збурює рух в орбіті. Саме тому, ще в 60-70-х роках XXст. три рази уточнювалась остання аналітична теорія руху Місяця, створена Брауном. Зокрема, лише в 60-х роках знайшла пояснення і була виключена з розряду емпіричних нерівність понад 9". Для низки супутників інших планет теорії руху є ще досить наближеними.
Висновок
Загалом, можна стверджувати, що сучасні аналітичні і чисельні теорії руху небесних тіл є досить високоточними і задовольняють потребам вирішення наукових і прикладних завдань, проте їх не можна вважати завершеними. За точністю обчислень, прийнятих мас планет і інших констант теорії забезпечують формальну точність на рівні сотих часток дугових секунд, але неузгодженість обчислених і спостережених положень збільшується на 1-2 порядки на інтервалі декількох десятків років. Ось тому астрономи, "наділені працелюбністю та любов'ю до істини", як говорив Птолемей, мають перед собою одне з найважливіших завдань: продовжувати, примножувати та уточнювати ряди спостережень і їхню методичну обробку до тих пір, поки не будуть з'ясовані існуючі загадки в цій проблемі. Отже, дослідження руху тіл Сонячної системи і створення їхніх теорій руху залишиться і надалі однією з найважливіших проблем в астрономії.
Література
1. А. Алексеев. Древние и современные теории движения небесных тел.М., 1989.
2. Астрономічний календар на 1999 рік. ГАО АН України, 1998.
28-04-2015, 23:35