Вопрос, который вытекает из скептического аргумента, может быть облечен в две формы[13] .
Существует ли какой-нибудь факт, который бы свидетельствовал о том, что я имел в виду "плюс", а не "квус", отвечая "125" на поставленный математический вопрос?
Есть ли у меня какая-нибудь причина быть уверенным, что сейчас я должен ответить на известный вопрос "125", а не "5"?
Эти вопросы связаны: я должен ответить "125", потому что уверен, что этот ответ также соответствует тому, что я раньше имел в виду (т.е. действию "плюс"). Если есть факт, свидетельствующий о том, что я имею в виду то же, что и раньше, пользуясь знаком "+", то он может быть причиной моей уверенности в ответе "125". Иначе – мой ответ случаен, т.е. не может быть подведен под какое-то определенное правило или, что то же самое, может быть подведен под любое правило.
При этом скептик не оспаривает теперешней нашей уверенности в применении того или иного правила, в легитимности того или иного ответа, он согласен, что в соответствии с нашими теперешними правилами "68 + 57" означает 125; шире — он не оспаривает теперешних правил того языка, на котором мы с ним дискутируем: он сам говорит на этом же языке; он только оспаривает, что мое теперешнее использование языка совпадает с моим прошлыми его использованием, что теперь я подтверждаю мои прошлые лингвистические намерения. Проблема не в том, "Как я знаю, что 68 плюс 57 есть 125?" — на это можно ответить, произведя вычисление, — а в том, "Как я знаю, что "68 плюс 57" в согласии с тем, что я имел в виду под "плюсом" в прошлом, должно означать 125?". Если слово "плюс", как я использовал его в прошлом, означало функцию квус, а не плюс, тогда моя прошлая интенция была такой, что на вопрос "Сколько будет 68 плюс 57?", я должен был бы ответить "5". Имея в своем прошлом конечное число вычислений, относительно которых я полагаю, что, делая их, я применял правило сложения, но ничто не мешает нам предположить, что "на самом деле" я следовал в этих случаях правилу "квожения", причем различия между применением правил сложения и квожения не были заметны в прошлом — в том, что касается произведенных в прошлом вычислений, оба этих правила совпадают, — но различие между ними может состоять как раз в том, что сложение требует ответить 125 на известный вопрос, а квожение — 5. Поскольку я не могу сказать точно, какое правило из этих двух я действительно применял в прошлом, хотя думал, что применяю правило сложения, я не могу быть уверен, что в новом случае вычисления ответ 125 предпочтительнее, чем 5; вернее, учитывая специфику скептического поведения скептика Крипке, будучи уверен, что сейчас я должен ответить 125, поскольку сейчас-то я применяю правило сложения, я никак не могу обосновать свою уверенность в том, что в прошлом я тоже применял правило сложения, а не квожения. С другой стороны, этот скептицизм является и скептицизмом в отношении теперешнего использования правил, поскольку никакого факта из моего связанного с вычислениями прошлого не подсказывает мне, что ответ на теперешний вопрос должен быть 125, а не 5 — подобно примеру Витгенштейна "Как я знаю, что этот цвет "красный"?" (Замечания по основаниям математики, ч.1, § 3) или примеру Нельсона Гудмена с применением термина " green ", под которым в прошлом он мог постоянно понимать то, что соответствует термину " grue "[14] .
Возможно следующее возражение: "я не необоснованно даю ответ 125, поскольку, прежде чем дать его, я выполняю некоторый усвоенный алгоритм – я вычисляю ответ". Однако, развивая свое сомнение, скептик может спросить, "Что свидетельствует мне о том, что прежде я считал, а не квитал – т.е. что я под правилами "счета" не мыслил на самом деле "квета", где "квитать" значит то же самое, что и считать, за исключением случая "68 + 57", где "квитать" подразумевает вместо сложения использовать квожение…" И так далее – каждое правило языка, ссылкой на которое мы пытались бы подтвердить применение того или иного правила в прошлом, само подвержено попаданию в круг скептической аргументации ad infinitum .
Количество случаев применения правила сложения потенциально бесконечно, и нетривиальные интерпретации правила — так же, как и стандартные — должны быть совместимы с любым конечным множеством применений обычного вида. Тогда, как представляется, следует предположить наличие некоторого истинностного фактора, делающего истинным мое утверждение "плюс", которым я обозначаю обычную функцию сложения, а не нечто иное. Для Крипке эта ситуация указывает на Юмову проблему, для которой, по мнению Крипке, Витгенштейн дает "скептическое" решение, причем для обоих упомянутых выше вопросов.
Главная аналогия между скептицизмом Витгенштейна и скептицизмом Юма заключается в том, что оба они считают невозможным прямое решение своей скептической проблемы и предлагают ее скептическое решение. Соответственно, Крипке дает определения прямому и скептическому решениям.
Предлагаемое решение можно считать прямым, если оно показывает, что при ближайшем рассмотрении скептицизм оказывается неоправданным; некоторый сложный аргумент может все же доказать тезис, в котором сомневался скептик. Попытку прямого решения скептического парадокса дает приведенный выше аргумент алгоритма в следующей форме: "в уме" у нас содержится что-то вроде таблицы или инструкции, определяющей применение правила для каждого из случаев. Этот аргумент, однако, может работать только для правил, действующих на конечном числе случаев, поскольку наша память не может вместить информацию о бесконечном числе случаев; большинство же правил распространяются именно на бесконечное число случаев.
Прямым решением могло бы быть диспозициональное: мыслить сложение под знаком "+" значит быть расположенным (иметь диспозицию), когда попросят суммировать любые " x + y ", дать в ответ сумму x и y ; мыслить сложение (квожение) под знаком "квус" значит иметь диспозицию дать в ответ на такой же вопрос квумму x и y . Сказать, что на деле я в прошлом имел в виду плюс, значит сказать, что, будучи в прошлом спрошен дать ответ на вопрос "68 + 57 = ?", я ответил бы 125. Но в прошлом я не сталкивался с таким случаем, так что моя прошлая диспозиция соответствующая "следованию правилу сложения" – не более, чем гипотеза; в прошлом я мог бы иметь диспозицию дать ответ 5 на указанный вопрос, какова была моя диспозиция в прошлом (и какому правилу она соответствовала), никак не обосновывается тем, что теперь, уж поскольку я актуально отвечаю 125, я могу приписать себе диспозицию давать ответ 125, когда передо мной стоит вопрос "68 + 57 = ?". Кроме того, диспозициональное решение не учитывает существование очень больших чисел, производить с которыми действия в уме или на бумаге (или как угодно) практически невозможно или слишком долго, чтобы на это хватило человеческой жизни: таким образом, ответом на подобные вопросы будет выражение неспособности дать на такой вопрос вообще какой бы то ни было ответ; диспозиция между тем предполагает, что ответ в соответствии с правилом сложения может быть дан на любой из бесконечного ряда вопросов о сумме двух положительных чисел, независимо от их размера.
Итак, прямое решение не проходит, и в этом заключается параллельность скептических ситуаций Витгенштейна и Юма. Априорное оправдание индуктивного рассуждения и анализ каузального отношения как подлинной необходимой связи между парами событий был бы прямым решением поставленных Юмом скептических проблем — индукции и каузальности, соответственно. Скептическое решение скептической философской проблемы начинается, напротив, с признания скептических негативных утверждений нерешаемыми (безответными). Тем не менее, наша повседневная практика или вера оправдана постольку, поскольку она, как показал скептик, не нуждается в том, чтобы требовать оправдания. И ценность скептического аргумента во многом состоит именно в том факте, что он показывает: повседневная практика, если она вообще нуждается в защите, не может быть защищена прямым путем. Скептическое решение может также включать в себя скептический анализ или описание повседневных полаганий с тем, чтобы опровергнуть их prima facie кажущуюся референциальную связь с метафизической абсурдностью.
Скептическое решение Юма таково: если А и В суть два типа событий, которые мы видим постоянно соединенными вместе, то мы обусловлены ожидать, что событие типа В будет сопутствовать событию типа А. Сказать о частном событии а, что оно вызвано другим событием в значит подвести эти два события под два типа А и В, которые, как мы ожидаем, будут и в будущем так же соединены друг с другом, как они были соединены в прошлом. Только когда частные события а и в мыслятся как относящиеся к двум типам событий А и В, соотнесенных посредством генерализации – за всеми событиями типа А следуют события типа В, – можно сказать, что а "влечет за собой" (является причиной) в. Когда события а и в мыслятся отдельно сами по себе, к ним нельзя применить никаких каузальных отношений. Это заключение Юма Крипке предлагает называть невозможностью индивидуальной каузальности.
Так же, как с Юмовым скептическим решением его скептического парадокса коррелирует заключение о невозможности индивидуальной каузальности, так и невозможность индивидуального языка — это заключение Витгенштейна, коррелирующее с его скептическим решением его собственного скептического парадокса.
Скептическое решение Витгенштейна основывается на отрицании существования какого-либо "превосходного факта", который бы свидетельствовал философам (служил бы критерием) о следовании тому, а не иному правилу. Витгенштейн в "ФИ" критикует ту позицию, которую он сам занимал в "Трактате". Там значение декларативного предложения обеспечивалось наличием у него условий истинности (его соответствием фактам). Теперь Витгенштейн замещает вопрос "В каком случае данное предложение может быть истинным?" двумя другими: первый — "При каких условиях эта словесная фигура может соответствующим образом утверждаться (или отрицаться)?"; второй, предполагающий ответ на первый вопрос — "Каковы в нашей жизненной практике роль и применение утверждения (или отрицания) словесной фигуры при этих условиях?". Правильнее говоря, нельзя говорить об условиях "утверждения", но скорее, в более общем виде, об условиях, при которых должен быть сделан тот или иной ход (форма лингвистического выражения) в "языковой игре".
Все, что необходимо для легитимации утверждений о том, что некто имеет в виду нечто — это наличие приблизительно специфицируемых обстоятельств, при которых эти утверждения легитимно утверждаемы, и то обстоятельство, что игра в высказывание таких утверждений при этих условиях имеет место в нашей жизни (жизни языкового сообщества). Никакого предположения, что этим утверждениям "соответствуют факты", не нужно. Тогда, если Витгенштейн прав, мы не можем начать решать скептический парадокс, пока мы остаемся во власти предпосылки о том, что осмысленные декларативные предложения должны иметь целью (подразумевать) соответствие фактам. Если наши рассуждения основаны на этом, то мы можем только заключить, что предложения, приписывающие значение и интенцию другим, сами бессмысленны.
Если мы теперь вернемся к исходному вопросу — существует ли какой-нибудь факт, который бы свидетельствовал о том, что я имел в виду "плюс", а не "квус", отвечая "125" на поставленный математический вопрос? — то мы должны будем ответить на него так: "не имеется никаких фактов относительно меня, которые отличают мое обозначение определенной функции как "плюс" ... и вообще мое обозначение чего бы то ни было"[15] . Отсутствие таких фактов, в представлении Крипке, приводит Витгенштейна к тому, чтобы отказаться от объяснения значений утверждений, подобных "Знаком 'плюс' я обозначаю сложение" в терминах условий истинности, и заменять это объяснением в терминах условий утверждаемости ( assertibility ), которые отсылают к фактически действующей (а не просто потенциальной) конвенции конкретного языкового сообщества. Под последним в таком случае будет пониматься множество людей, использующих примененную в рассматриваемом утверждении знаковую систему — или, более строго, все примененные в рассматриваемом утверждении знаковые системы. Это соглашение, по теории Крипке, узаконивает возможность нашего обозначения операции сложения знаком "плюс" несмотря на то, что для этого отсутствуют фактические основания. Поэтому такое (предполагаемое) решение парадокса Витгенштейном Крипке называет скептическим: оно не опровергает собственно скептического тезиса об отсутствии условий истинности для утверждений описанного вида.
Аналогия между скептицизмом Витгенштейна и Юма прослеживается также и в том, что проблема следования правилу может быть рассмотрена как одна из возможных интерпретаций одной из наиболее традиционных философских проблем — проблемы тождества: как можно установить, что два нумерически разных предмета принадлежат к одному виду? Эта трудность была воспроизведена Юмом: описывая причинную связь, как устойчивую зависимость между явлениями одного и того же типа, он обратил внимание на то, что наша способность идентифицировать явления как одни и те же не имеет под собой никакой реальной основы и может быть, в лучшем случае, лишь делом привычки. Иными словами, такая идентификация всегда остается случайной.
Основное различие между проблемой следования правилу и проблемой тождества состоит в том, что последняя традиционно анализируется в категориях признаков или свойств[16] . Если для каждого свойства F предмет x обладает F ттт предмет y обладает F , то x идентичен y :
( F )( Fx <—> Fy ) —> x = y .
Как могли бы эти соображения прояснить употребление выражений вида "если некто следует правилу, то он должен получить то-то и то-то" и т.д.? Возможно, под вопросом оказывается наша способность делать определенные утверждения о правиле. Есть ли основания полагать, что существует общее понимание правила? Если бы изменения в температуре комнаты были достаточно локализованы, то не имело смысла бы говорить о температуре комнаты. Но та возможность, к которой привлек внимание Витгенштейн, вероятно, есть именно возможность того, что изменения в понимании локализованы таким образом ("кластеризованы"?) Если мы не можем рационально исключить эту возможность, то мы не можем говорить об определенном значении выражения, так как значение выражения — это только способ, которым это выражение обычно понимается.
Это означает, по сути, предположить, что в основе комментариев Витгенштейна находится некоторый вид индуктивного скептицизма[17] . Предположение могло бы быть усилено следующим образом. Витгенштейн очевидно отклоняет идею о том, что значение выражения — это нечто (что бы то ни было), что может быть легитимно рассмотрено как некоторое ограничение дальнейшего использования этого выражения. Один из способов поддержки этого представления состоял бы в том, чтобы предположить, что адекватная теория значения выражения должна на любой стадии являться теорией прошлых использований этого выражения. В этом случае каждое новое использование выражения было бы независимо от теории, данной ранее, и требовало бы уточнения и расширения этой теории. Конечно, решающим возражением на такое представление значения выражения был бы его конфликт со стандартными критериями того, что значит неправильно истолковать значение. Неправильно используя выражение, некто показывает, что он не понимает его, каким бы точным ни было знание этим человеком истории использования этого выражения. Знание значения есть знание о том, как сделать нечто: мы, как предполагается, знаем, как вообще должно использоваться это выражение.
Здесь следует заметить, что шаг от теории прошлого использования выражения к утверждению его общего использования является индуктивным. Знание, которое мы получаем, когда мы изучаем первый язык, скорее всего является не чем иным как индуктивно обоснованными заключениями о том, как выражения должны вообще использоваться, и эти заключения выведены из нашего опыта того, как эти выражения использовались ранее. Таким образом, чтобы обладать тем же самым пониманием выражения, что и кто-то еще, надо сформировать, на основе соответствующего обучения, ту же самую индуктивную гипотезу о правильном использования этого выражения. Но есть ли свидетельства в пользу того, что широкое семантическое разнообразие является действительной практической возможностью? Скорее напротив, все свидетельства очевидно указывают на то, что все мы имеем одни и те же индуктивные гипотезы. Добавляет ли Витгенштейн что-либо к индуктивному скептицизму относительно общих заключений о том, как выражение должно использоваться, на основании образцов его использования?
Ответ должен быть утвердительным. Дело в том, что если бы Витгенштейн этим ограничивался, то этот скептицизм не имел бы никакого отношения к теории значения. Наиболее важна здесь предполагаемая равная валидность неопределенного числа несовместимых гипотез, каждая из которых удовлетворяет (фактическим) данным о прошлом использовании некоторого выражения. Любое количество таких гипотез может ожидать своего часа Ч в лингвистическом сообществе. Но, как показали Юм и Гудмен, такова ситуация с любым индуктивным выводом. Таким образом, может показаться,
10-09-2015, 21:50