Философские вопросы математики

своем труде “Принципы математики” Б.Рассел переходит на позиции реализма и высказывает мысль, что нельзя обосновать математику, не признавая математические объекты, существующими независимо от сознания. [16; 87]

Абстрактные объекты не существуют в качестве самостоятельного объекта, стоящего между субъектом и реальным объектом, ибо они являются лишь формами выражения действительности. Сама же действительность выступает не как совокупность единичных фактов, созерцая которые, субъект выделяет то общее, что есть в них, а как сложная, расчлененная внутри себя целостность. Неверно превращать математические средства выражения предмета математики в сам предмет. Абстрактные объекты являются не объектами познания, а тем, что должно быть в голове человека, чтобы можно было в реальной действительности увидеть те или иные аспекты количественных отношений.

Представления, что математика имеет дело с реальной действительностью только через посредство абстрактных объектов, которые понимаются как существующие лишь во внутреннем мире субъекта, замыкает математика в рамки уже идеализированных фрагментов действительности и не может объяснить факта увеличения математического знания. Математическое познание имеет дело не с абстрактными объектами, а с пространственными формами и количественными отношениями действительности. Манипулирование абстрактными объектами в отрыве от объективной реальности не может привести к новым результатам. Абстрактные объекты сами по себе – застывший продукт познания и только обращение к новым аспектам действительности приводит к обогащению математического знания. Все это прекрасно понимал и выразил еще Р.Декарт. В “Правилах для руководства ума” он писал, что “мысля о числе, не нужно делать вывод, будто измеряемая вещь считается исключенной из нашего представления, как это делают те, кто приписывает числам чудесные свойства…”. [7; 149]

В этом случае мы сможем по мере надобности обращаться и к другим свойствам предмета, которые еще не выражены в числах. Тот, кто превращает математические средства выражения предмета математики в сам предмет, превращается , по словам Р.Декарта, из математика в счетчика, бессмысленно оперирующего со знаками и символами, загораживающими непроницаемой реальный предмет математики.

А.Гейтинг замечает, что “мы не могли бы сравнивать натуральные числа друг с другом, если бы не фиксировали их какими-либо средствами материального представления, почему они и продолжают существовать после акта их построения” [6; 24].

Абстрактные объекты и есть формы, отлитые предшествующей деятельностью человека в обществе. С точки же зрения каждого отдельного индивида они выступают как независимо от него существующая реальность, а это значит, что человек должен считаться с их природой как и с природой реально существующих вещей. Только в этом смысле и можно говорить об особом существовании абстрактных объектов.

3. Функция как отражение окружающей действительности

Функция представляет собой одно из основных математических понятий XX в., когда функциональному анализу стала принадлежать в математике выдающаяся роль. Но так было не всегда: после введения в математику понятия функции понадобилось более двух столетий, чтобы было осознано его действительное значение для развития математического познания.

Термин “функция” впервые был применен в конце XVII века Лейбницем (1646-1716) и его учениками. Вначале этот термин употребляли еще в очень узком смысле слова, связывая лишь с геометрическими образами. Речь шла об отрезках касательных к кривым, их проекция на оси координат и о “другого рода линиях, выполняющих для данной фигуры некоторую функцию” (от латинского “функтус” - выполнять). Таким образом, понятие функции еще не было освобождено от геометрической формы.

Лишь И. Бернулли дал определение функции, свободное от геометрического языка: “Функцией переменной величины называется количество, образованное каким угодно способом из этой переменной величины и постоянных” [4; 17]. Оно привело в восхищение престарелого Лейбница, увидевшего, что отход от геометрических образов знаменует новую эпоху в изучении функций.

Определение Бернулли опиралось не только на работы Лейбница и его школы, но и на исследования великого математика и физика Исаака Ньютона (1643-1727), который изучил колоссальный запас самых различных функциональных зависимостей и их свойств. Вместо слова "функция" Ньютон применял термин "ордината". Он сводил изучение геометрических и физических зависимостей к изучению этих "ординат", а сами "ординаты" описывали различными аналитическими выражениями.

Чтобы определение функции, данное И.Бернулли, стало полноценным, надо было условиться, какие способы задания функций следует считать допустимыми. Обычно считали, что допускаются функции, заданные выражениями, в которые входят числа, буквы, знаки арифметических действий, возведение в степень и извлечение корней, а также обозначения тригонометрических, обратных тригонометрических, показательных и логарифмических функций. Такие функции называли элементарными. Вскоре выяснилось, что интегралы от них не всегда выражаются через элементарные функции. В связи с этим пришлось добавить новые функции, получающиеся при вычислении интегралов от элементарных функций, при решении дифференциальных уравнений и т. д. Многие из этих функций нельзя было явно выразить с помощью ранее известных операций. Поэтому один из самых замечательных математиков XVIII века Леонард Эйлер (1707-1783) в одной из своих работ пишет: "Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называют функциями вторых" [2; 18].

В 1834 году Н.И.Лобачевский писал: "Общее понятие функции требует, чтобы функцией от х называть число, которое дается для каждого х и вместе с х постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подает средство испытывать все числа и выбрать одно из них; или, наконец, зависимость может существовать и оставаться неизвестной." [11; 284]

Более общий подход к понятию функции, при котором отождествляются понятия "функция", "отображение", "оператор", возник после того, как во второй половине XIX века было введено общее понятие множества. И именно творцы теории множеств Г. Кантор (1845-1918) и Р. Дедекинд (1831-1916) дали общее определение отображения. Его можно сформулировать:

Пусть X и Y - два множества; говорят, что задано отображение f множества X в (на) множество Y, если для каждого элемента x из X указан соответствующий ему единственный элемент y из Y. Этот элемент y называют образом элемента х при отображении f и обозначают f(x). Введение в математику общего понятия об отображении множеств позволило прояснить и ряд вопросов, относящихся к функциям, например, уточнить, что такое обратная функция, сложная функция и т. д.

В результате систематического построения математического анализа на основе строгой арифметической теории иррациональных чисел и теории множества возникла новая отрасль математики - теория функций действительного переменного. Она оказала большое влияние на развитие многих других отделов математики

В начале XX века на базе этой теории функций возникла новая ветвь математики - функциональный анализ. В нем изучают множества, состоящие из функций, последовательностей, линий, в которых определены операции сложения и умножения на числа. Эти операции обладают свойствами, похожими на свойства операций над векторами. Однако в отличие от нашего пространства, имеющего лишь три измерения, изучаемые в функциональном анализе, пространства могут быть бесконечномерными. Это не мешает специалистам по функциональному анализу применять в своих исследованиях геометрический язык.

Хотя функциональный анализ кажется очень абстрактной наукой, он находит многочисленные приложения в вычислительной математике, физике, экономике, позволяя с единой точки зрения трактовать самые различные вопросы и вскрывать геометрическую сущность проблем, которые на первый взгляд очень далеки от геометрии. Говоря о связи абстрактной науки с практикой, видный математик Р. Курант (1888-1972) писал:

“Мы стартуем с Земли и, сбросив балласт излишней информации, устремляемся на крыльях абстракции в заоблачные высоты, разреженная атмосфера которых облегчает управление и наблюдение. Затем наступает решающее испытание - приземление; теперь нужно установить, достигнуты ли поставленные цели...” [4; 25]

В XX веке понятие функции подверглось дальнейшим обобщением. Возникло понятие функции, отражавшее свойства физических величин, сосредоточенных в отдельных точках, на линиях или поверхностях. Потребности физики привели к изучению функций, принимавших случайные значения. Но методы математического анализа позволили справиться и с проблемами теории случайных функций, нашедшей многочисленные приложения в физике и технике.

Современная трактовка понятия функции выглядит следующим образом: "функцией называется отношение двух (группы) объектов, в котором изменению одного из них сопутствует изменение другого" [13; 615-616]

Но как бы далеко ни отходило то или иное обобщение понятия функции от определений И.Бернулли и Л.Эйлера, к каким бы сложным объектам оно ни прилагалось, в основе всех построений лежала одна и та же мысль о существовании взаимозависимых величин, знание значения одной из которых позволяет найти значение другой величины.

В результате изучения различных функций в математике появились новые теории. Так немецкий математик Ф.Клейн и французский математик А.Пуанкаре создают теорию автоморфных функций, в которой находит замечательные применения геометрия Лобачевского. Французские математики Э.Пикар, А.Пуанкаре, Ж.Адамар, Э.Борель глубоко разрабатывают теорию целых функций. Геометрическую теорию функций и теорию римановых поверхностей развивают А.Пуанкаре, Д.Гильберт, Г.Вейль, немецкий математик К.Каратеодори, теорию конформных отображений - советские математики И.И.Привалов, М.А.Лаврентьев, Г.М.Голузин и др. На основе комплексных чисел возникает теория функций комплексного переменного. Общие основы этой теории были заложены О.Коши.

Выше приведенные примеры теорий функции показывают нам важность данного понятия в современной науке. Однако можно сделать ошибочный вывод (в силу множества абстрактных понятий, связанных с функцией) о том, что все эти теории не имеют никаких связей с окружающим миром. В действительности же эти связи имеют более сложные формы. Многие эти теории возникли не из-за запросов естествознания и техники, а из внутренних потребностей самой математики. Т. е. непосредственного отношения к окружающему миру эти теории не имеют. Они играют вспомогательную роль для прикладных наук.

Как мы уже выяснили, понятие “функция” в математике играет значительную роль. Посмотрим теперь на то, какую же роль играет это понятие в философии. Прежде всего следует заметить, что в философских словарях трактовки этого понятия трудно найти. Следовательно, можно сделать вывод, что это понятие в философии играет второстепенную роль. Однако, зависимость между элементами некоторых множеств, - как одна из смысловых сторон “функции”, имеет непосредственное отношение к окружающему миру.

В. И. Ленин писал: “Первое, что бросается нам в глаза при рассмотрении мира в целом – это взаимная связь всего существующего” (см. Ленин В.И. Пол. собр. соч. – Т. 20, с. 20).

Но далеко не все связи могут быть отражены в виде функциональных зависимостей (формул). Наиболее наглядно демонстрируют подобные связи в окружающем мире законы физики, которые могут быть записаны в виде формул. Это, например, второй закон Ньютона , закон Гука , законы Кеплера и многие другие законы, отражающие взаимозависимость окружающего мира.

Таким образом, функция, как и любое другое математическое понятие, непосредственно или опосредованно отражает окружающую нас действительность.

Заключение

Таким образом, проблемы реальности и существования в математике имеют неоднозначное истолкование в философии. Вопрос о соотношении понятий и утверждений математики и окружающей действительности был освещен с разных философских позиций. А именно, с точки зрения материализма и субъективного и объективного идеализма, эмпиризма и неопозитивизма. Каждое из вышеперечисленных философских течений имели разные взгляды на разрешение поставленного вопроса.

Проблема существования в математике также была представлена несколькими философскими направлениями: интуиционизмом, конструктивным материализмом и субъективным идеализмом. Каждое из этих направлений имело свою точку зрения на данную проблему. Разносторонность подходов к решению поставленных проблем говорит об их сложности и неоднозначности в толковании и разрешении.

В качестве примера одного из математических абстракций было рассмотрено понятие “функция”. Описана история возникновения данного понятия, неоднозначность в его толковании, роль и значение в современной науке.




10-09-2015, 22:16

Страницы: 1 2
Разделы сайта