Терминология и мифы эволюционизма

силой. Исходя из отбора, совершенно невозможно прогнозировать развитие системы – можно только констатировать, что "будет так, как будет", или "выживет сильнейший". Ведь если бы биологическая эволюция развивалась совершенно по-другому сценарию, и в результате реализовывались совершенно другие типы организмов, то принцип отбора с той же степенью истинности описал бы и любой другой вариант. Тезис "было, как было, а будет, как будет" опровергнуть нельзя. Но и сделать хоть какой-то научно целесообразный вывод из него тоже невозможно.

Подытоживая рассуждения о месте принципа отбора в эволюционных теориях, ещё раз сформулирую основной пафос моих терминологических изысканий: эволюционное движение системы — это нечто совершенно другое, чем процесс изменчивости и приспособления элементов системы в ходе этого движения. Дарвин "мне друг, но истина дороже".

III. Миф о самоорганизации и саморазвитии

Зададим очень простой вопрос: какой должна быть теория самоорганизующихся систем? Ответ вполне прозрачен: это должна быть теория, способная описать автономное (самостоятельное, не направляемое внешними воздействиями) образование некоторой функционирующей системы из независимых, рассредоточенных элементов. Можно рассмотреть и не такой жёсткий вариант определения, более подходящий для теории саморазвития, чем для теории самоорганизации: это теория, описывающая закономерности появления (формирования, образования) у некоторой автономной системы новых признаков, свойств, функций и так далее, под воздействием только внутренних причин. Казалось бы, вполне корректно сформулированная задача. Вот только есть один вопрос на засыпку: а что же будет описывать эта теория самоорганизации (саморазвития)? Кто мне сможет назвать хоть одну систему (не равную всему Миру), которую можно было бы без натяжек назвать самоорганизующейся или саморазвивающейся?

Первое, что приходит всем в голову – это живые системы. Хорошо, начнём, а вернее продолжим начатый в предыдущих частях разговор о биологической эволюции.

Претендент №1: живой организм

Итак, можно ли считать биологический организм самоорганизующейся, саморазвивающейся системой? Наверное, нет. Появление у отдельного организма новых свойств в период его роста предопределено генетической программой вида. Мы же не будем считать самоорганизацией автомобиля процесс его сборки по чертежам. Хотя, конечно, "сборка" живого организма — это нечто другое. Он сам себя собирает. Но всё же я не стал бы говорить об организме, как о самоорганизующейся системе. Он скорее самовоспроизводится. А это нечто совсем другое. Все его качества предзаданы и определены внешней для него системой — видом. А появление некоторых новых, отличных от общевидовых, качеств носит случайный, мутационный характер, и их нельзя представить как саморазвитие.

Претендент №2: биологический вид

Говорить о саморазвитии вида также не приходится.

Во-первых, мы не можем рассматривать вид как саморазвивающуюся систему, поскольку новые признаки, появляющиеся у вида, отражают, прежде всего, изменения среды, а не некоторое его самостоятельное развитие. Если окружающая среда не изменяется, то и вид остаётся неизменным — действие отбора направлено на поддержание его стабильности.

Во-вторых, поскольку в основе изменений вида лежат случайные мутации (по традиционной трактовке биологической эволюции) или различные внешние воздействия (по альтернативным теориями), то ни о какой внутренней потенции вида к изменениям, которая служила бы движущей силой его саморазвития, говорить не приходиться.

В-третьих, движение биологического вида, как я уже писал ранее, не является развитием в полном смысле этого слова: изменение некоторых морфологических свойств (окраски, размеров и так далее) нельзя рассматривать как приобретение принципиально новых свойств, что только и можно было бы называть развитием. Тем более, что часто приспособление вида к окружающей среде носит деградационный характер.

Признать вид саморазвивающейся системой можно только при условии, что будет точно установлен механизм непосредственного образования вида последующего класса из вида низшего класса (с возникновением новых органов и так далее), да ещё исключительно по внутренним, сугубо видовым причинам (хотя откуда им, этим внутренним причинам, взяться?).

Претендент №3: биосфера (или другие авангардные системы)

Аналогичные рассуждения можно привести и в обоснование "несамостоятельного" развития более крупных биологических таксонов, в частности, классов. Их развитие, безусловно, связано с общими процессами в биосфере — оно отражает и реализует её эволюцию.

Таким образом, мы пришли к вполне естественному выводу, заявленному уже в первой части статьи — эволюционирующими (то есть саморазвивающимися) можно назвать только две системы: Мир и авангардную систему (биосфера была авангардной системой в период биологической эволюции).

Всё сказанное справедливо и для нынешнего авангарда эволюции — социальной системы. Ни один из элементов, ни одну из подсистем социума (людей, предприятия, социальные институты) нельзя рассматривать как саморазвивающиеся, самоорганизующиеся. В своих изменениях они лишь отражают общий процесс эволюции социальной системы.

Даже столь привычное для нас словосочетание "саморазвитие человека" не подразумевает некоторое абсолютное "само-". Человек встроен в социальную систему, и под его "саморазвитием" имеется в виду лишь приобретение внешних человеку знаний, умений без посторонней помощи. Если человека полностью оградить от влияния социума, то его "саморазвитие" ограничится его генетической программой, то есть уровнем животного (хотя, конечно, и высокоразвитого).

Претендент №4 (последний): Мир

Итак, допустим, мы ответили на вопрос: какие системы могла бы описать гипотетическая теория саморазвития (самоорганизации)? Это сам Мир и авангардная эволюционирующая система. Но с первого же взгляда понятно, что они совершенно не подходят под определение самоорганизующихся систем, приведённое в начале текста.

Авангардная система (скажем, биосфера в своё время или социальная система) хоть и приобретает в ходе эволюции новые определённости, но её образование никак не может быть представлено как самоорганизация (самосборка) из некоторых независимых, рассредоточенных элементов. И более того, авангардная система не является абсолютно замкнутой, обособленной от систем предыдущего уровня эволюции. Её развитие обязательно определяется продолжающимся движением (хотя уже не эволюционным) предыдущих систем, которые она включает в себя в качестве элементов. Это — с одной стороны. А с другой — совокупность всех систем более ранних иерархических уровней одновременно является и внешней средой для развития авангардной системы и активно влияет на её формирование. И это жёсткое взаимодействие системы и среды не позволяет рассматривать систему как замкнутую и саморазвивающуюся по своим внутренним причинам. Остаётся сделать вывод, что таковой (замкнутой и саморазвивающейся) системой является только Мир.

САМО— или не САМОразвивается Мир?

Однако тут же встаёт вопрос о правомерности применения терминов "саморазвитие" или "самоорганизация" к такому объекту, как Мир. Определить, является или не является система самоорганизующейся, можно только находясь вне её, то есть с позиции стороннего наблюдателя, в позицию которого мы, естественно, встать не можем. Более того, бессмысленно утверждать, что Мир организуется, поскольку его состояние в каждый конкретный момент времени есть в полной мере организованное. И, конечно, нельзя говорить о некой САМОорганизации, поскольку по определению для Мира никакого "не-САМО" и быть не может.

Конечно, оставаясь в рамках традиционной физики и теории Большого Взрыва, можно представить Мир (Вселенную) как самоорганизующуюся из хаотически распределённых элементов систему. Однако, тем, кто читал мою первую статью о парадигме глобального эволюционизма, понятно, что я могу сказать на эту тему: подобный процесс нельзя считать саморазвитием — он обязательно требует существование внешних Миру физических законов и может быть описан лишь как разворачивание, реализация предзаданного сценария.

А может быть, все же саморазвитие есть на физическом уровне?

Я специально отложил рассмотрение возможности саморазвития на низших иерархических уровнях до более удобного момента, до упоминания проблемы предзаданности. Именно по причине предзаданности сценария изменений все известные нам физические и химические явления и процессы не могут считаться саморазвивающимися. Образование структур или колебательных процессов в открытых нелинейных потоках — не более самоорганизующиеся, саморазвивающиеся явления, чем дифракционная решётка или колебания маятника. Во всех этих случаях мы наблюдаем лишь реализацию жёстко определённого сценария, а не саморазвитие систем или процессов. Более того, во всех нелинейных процессах, представляемых как самоорганизующиеся, образуются не сложные функционирующие системы с множеством взаимодействующих элементов, а лишь регулярные структуры. Описание процесса образования структур — это значительное достижение современной науки, но очень далеко отстоящее от теории саморазвития и самоорганизации сложных систем.

В предыдущем абзаце был брошен камень в огород синергетики, что наверняка не осталось незамеченным просвещённым читателем. Да и весь разговор о самоорганизующихся системах, естественно, подразумевает плавный переход к обсуждению проблем именно этой области современной науки, претендующей на место "теории эволюции и самоорганизации сложных систем" (Е. Н. Князева, С. П. Курдуюмов). Именно этим претензиям синергетики, порождённым, на мой взгляд, элементарной терминологической путаницей, будет посвящена следующая часть статьи о мифах и терминологии эволюционизма. А сейчас вывод по этой части статьи.

Вывод

Теории самообразования и саморазвития систем не существует и существовать не может по простой причине — отсутствие предмета теории. Для описания систем и процессов, которые я рассматривал в качестве претендентов на роль саморазвивающихся, нужны специальные, довольно не похожие друг на друга теории: теория воссоздания организма по заданной программе, теория изменчивости вида в процессе его адаптации к окружающей среде, теория формирования новых видов в ходе эволюции биосферы, теория образования дипассивных структур в открытых нелинейных средах и так далее, и так далее. Специалисты, работающие над созданием единой (общей) теории самоорганизации и саморазвития сложных систем, наступают на те же грабли, по которым уже десятилетия топчутся физики, работающие над созданием общей теории поля или единой теории физических взаимодействий.

IV. Миф о синергетике как эволюционной теории

Основное, что подтолкнуло меня к написанию данной части статьи – это, на мой взгляд, невзвешенное, некорректное, противоречивое использование терминов «эволюция», «развитие», «саморазвитие», «самоорганизация» в текстах, посвященных молодой, продуктивной науке – синергетике. Я ни в коей мере не хочу принизить ее действительно значимые достижения. Хотелось бы только обратить внимание читателей на необоснованность выводов приверженцев идеи глобальности, новофилософичности синергетической идеологии, делающих смелые экстраполяции результатов этой точной науки в области, далекие от ее сферы приложения.

В двух словах о синергетике

Предметом изучения синергетики (или по другой версии названия - неравновесной термодинамики) являются открытые нелинейные процессы в различных средах (физических, химических, биологических, социальных). Вот, для примера, короткий перечень явлений, которые попадают в сферу интересов синергетики: тепловая конвекция, волны в плазме, погодные и климатические изменения, течение химических и биохимических реакций, колебания численности биологических популяций, демографические процессы и т. п. Нелинейными эти процессы называются потому, что их ход описывается нелинейными уравнениями. Открытость процессов означает, что идут они с постоянным притоком и оттоком энергии, вещества, информации или чего другого, что задействовано в процессе. Неравновесность - что основные эффекты синергетики проявляются в моменты, когда среда или поток находятся в состоянии далеком от равновесия. Неотъемлемая особенность процессов, которые изучает синергетика – это их хаотичность, наличие случайной составляющей, размытость - диссипативность, как говорят синергетики.

Сразу же следует заметить, что синергетика изучает лишь внешние параметры протекания процессов: их скорость, распространение в пространстве и т.д., а не их содержание, способ реализации. То есть специалисты по синергетике не отнимают хлеб от физиков, химиков, экономистов, метеорологов и т.д.

А теперь обратимся к достижениям синергетики, верней к интересным явлениям и эффектам в неравновесных средах, которые она изучает: (1) в открытых нелинейных средах может возникать макроскопическая организованность: волны, регулярные структуры - так называемые диссипативные структуры; (2) для конкретной среды и конкретного процесса возможен дискретный спектр диссипативных структур, что отражает множественность решений нелинейных уравнений; (3) вследствие этой же множественности решений нелинейных уравнений процессы в неравновесной среде при одних и тех же условиях могут протекать по нескольким возможным траекториям (точка, в которой процесс «осуществляет выбор» между возможными траекториями называется точкой бифуркации); (4) образование той или иной структуры, выбор неравновесным процессом той или иной траектории в точке бифуркации зависят от незначительных флюктуаций среды, что позволяет говорить о существенной роли хаоса в протекании неравновесных процессов и формировании структур.

Это, конечно, далеко не весь список. Понятно, что в несколько абзацев не уместить то, чему посвящены тома и тома. Но надеюсь, сказанного достаточно, чтобы понять, о чем идет речь даже впервые прочитавшим слово «синергетика».

А где же эволюция сложных систем?

Для темы нашего разговора, важно то, что в этом кратком изложении основ синергетики мне, без какого либо ущерба для смысла, не понадобилось использовать термины: «сложная система», «развитие», «самоорганизация», «эволюция», которыми постоянно оперируют специалисты по синергетике.

Да и действительно, можно ли потоки или среды (жидкостные, газовые, плазменные, информационные и т.д.) назвать сложными системами? Где элементы, связи, процессы, функционирование?

О каком «развитии» и тем более «эволюции» может идти речь в элементарных процессах горения, теплопроводности, течения химических реакций и т.д.? Где появление принципиально новых качеств, явлений?

Корректно ли назвать «самоорганизацией» появление в среде структур? Тем более, когда структуры не из чего не организуются, а являются лишь регулярными неоднородностями среды, волнами или рядом турбулентностей, и вообще не САМОорганизуются, а формируются потоками.

Конечно, каждая наука свободна в выборе терминологии. Никто не может ограничить использование таких удобных для произнесения фраз: «развитие реакции», «самоорганизация структуры», «многовариантность эволюции процесса». Но именно вольно обиходное применение терминов послужило причиной не всегда обоснованного, на мой взгляд, применения выводов синергетики к сложным системам, в которых реально реализуются процессы развития и эволюции. Именно некорректный перенос терминологии породил такие заключения, что «синергетика – это теория самоорганизации и эволюции сложных систем», «синергетика обосновывает альтернативность путей эволюции» и т.д. (Приведенные фразы взяты не из какого-то конкретного текста, это стандартная риторика, которой предостаточно в статьях, посвященных идеологии синергетики.)

Элементарная проблема редукционизма

Правда, помимо элементарной терминологической неряшливости, некоторым оправданием перескока с разговора о потоках и средах, к обсуждению развития сложных развивающихся систем может служить наличие в последних нелинейных диссипативных процессов. Эти процессы (например, экономические, демографические процессы в социальной системе) возникают в результате хаотичного взаимодействия огромного числа элементов сложной системы и действительно могут быть описаны нелинейными уравнениями в рамках синергетического подхода. Но согласитесь, что формальный расчет некоторых частных процессов в системе никак не означает описание функционирования самой сложной системы. То есть я хочу сказать, что предметом синергетики является не сложная система как таковая, а лишь некоторые процессы в этой системе. Перед нами элементарная проблема редукционизма. К примеру, мы же не будем утверждать, что химия в состоянии описать функционирование биологического организма, только на основании того, что в живом организме протекает множество химических реакций.

Многовариантность эволюции или просто разнообразие форм?

Наличие нескольких решений у нелинейных уравнений означает не более того, что нелинейные процессы в той или иной системе могут иметь несколько вариантов осуществления. Но из этого нельзя сделать вывод, что сама система имеет множество путей эволюции.

Во-первых, априорное наличие нескольких решений ни в коей мере не говорит об эволюции, а является лишь констатацией возможности нескольких предписанных состояний. Эволюцией можно назвать появление нового нелинейного процесса, описываемого новым уравнением с принципиально новыми степенями свободы, а не факт существования у известного уравнения нескольких решений.

Во-вторых, само наличие нескольких решений или вообще какое-либо разнообразие элементов, процессов и т.д. не есть разнообразие эволюционных путей. Опять же, большую достоверность имеет обратное утверждение: единая эволюционная определенность реализуется в многообразии форм. Так, появление нового эволюционного класса животных (например, млекопитающих) реализуется в огромном многообразии видов. Тут, конечно, очень существенную роль играет фиксация терминологии. Если в качестве эволюционного процесса признать появление видов – то эволюция действительно имеет множество путей, а если относить к эволюционным изменениям лишь появление нового класса (что реально является принципиально новой определенностью, новым вариантом организации живого организма, см. предыдущую статью), то следует признать, что в эволюции Мира на каждом этапе реализуется лишь один вариант, но во множестве форм. (Однако не следует принимать это утверждение, как приписывание Миру строгого детерминизма. Я говорю лишь о единичности результата, а не о предписанности конкретной формы его реализации).

В-третьих, мы в принципе не можем определить, является ли эволюция Мира детерминированной или нет по одной простой причине: Мир для нас – это уникальный объект, мы являемся его элементами, и любые наши заверения о вариантах его движения как целого принципиально не проверяемы. Более того, Мир вообще не может быть предметом синергетики, так как он не является открытой средой (потоком).

Хотя, конечно, вывод синергетики о вариантности течения нелинейных процессов и случайности выбора одного из вариантов в точке неустойчивости вполне применим к неуникальным элементам эволюционирующей системы. То есть в случае, если элементы эволюционирующей системы могут реализовываться в нескольких дискретных формах, то процесс выбора одной из них одним конкретным элементом (например, направление развития и форма отдельного экономического предприятия) вполне вписывается в схему синергетического подхода.

Новая философия или все же очередная точка зрения?

Следует четко разделять синергетику, как точную науку, описывающую процессы в открытых нелинейных средах и потоках, и синергетическую естественнонаучную парадигму, переносящую, экстраполирующую точные научные выводы на процесс развития сложных систем, чаще


10-09-2015, 22:43


Страницы: 1 2 3
Разделы сайта