Методы теоретической популяционной генетики

Общие модели эволюции. Методы теоретической популяционной генетики. Теория нейтральности М.Кимуры

1. Классическая популяционная генетика

В этой лекции мы рассмотрим модели, характеризующие общие свойства эволюции. Начнем с синтетической теории эволюции. Эта теория была развита в начале 20-го века. Она основана на учении Ч.Дарвина о естественном отборе и на представлениях Г.Менделя о генах - дискретных элементах передачи наследственных признаков. Большую роль в становлении синтетической теории эволюции сыграла маленькая плодовая мушка Drosophila. Именно эксперименты на этой мушке позволили примирить кажущиеся противоречия между Дарвиновским представлением о постепенном накоплении полезных изменений и наследовании этих изменений и дискретным характером Менделевской генетики. Эксперименты на дрозофиле показали, что мутационные изменения могут быть очень небольшими.

Математические модели синтетической теории эволюции были разработаны Р. Фишером, Дж. Холдейном и С. Райтом. В основном эта математическая теория классической популяционной генетики была завершена к началу 30-х годов.

Согласно синтетической теории эволюции, основным механизмом прогрессивной эволюции является отбор организмов, которые получают выгодные мутации.

2. Математические методы популяционной генетики

Математические модели популяционной генетики количественно характеризуют динамику распределения частот генов в эволюционирующей популяции [1-4,6,8]. Есть два основных типа моделей: 1) детерминистические модели и 2) стохастические модели.

Детерминистические модели предполагают, что численность популяции бесконечно велика, в этом случае флуктуациями в распределении частот генов можно пренебречь, и динамику популяции можно описать в терминах средних частот генов.

Стохастические модели описывают вероятностные процессы в популяциях конечной численности.

Здесь мы кратко охарактеризуем основные уравнения и математические методы популяционной генетики. Наше изложение будет основываться на рассмотрении наиболее характерных примеров. Уравнения моделей мы будем приводить в основном в демонстрационных целях – без вывода, с пояснением смысла этих уравнений; тем не менее, мы будем приводить ссылки на литературу, в которой сделаны соответствующие математические выводы.

2.1. Детерминистические модели

Рассмотрим популяцию диплоидных1) организмов, которые могут иметь несколько аллелей2) A1 , A2 ,..., AK в некотором локусе3) . Мы предполагаем, что приспособленности организмов определяются в основном рассматриваемым локусом. Обозначая число организмов и приспособленность генной пары Ai Aj через nij и Wij , соответственно, мы можем определить частоты генотипа и гена Pij и Pi , а также средние приспособленности генов Wi в соответствии с выражениями [1,2,4]:

Pij = nij /n , Pi = S j Pij , и Wi =Pi -1 S j Wij Pij , (1)

где n – численность популяции, индекс i относится к классу организмов {Ai Aj } , j = 1,2,..., K , которые содержат ген Ai . Популяция предполагается панмиктической4) : при скрещивании новые комбинации генов выбираются случайным образом из всей популяции.

Для панмиктической популяции приближенно справедлив принцип Харди-Вайнберга [1]:

Pij =Pi Pj , i, j = 1,..., K . (2)

Уравнение (2) означает, что во время скрещивания генотипы формируются пропорционально частотам генов.

Эволюционная динамика популяции в терминах частот генов Pi может быть описана следующими дифференциальными уравнениями [1,2,4]:

dPi /dt = Wi Pi - <W> Pi - S j uji Pi + S j uij Pj , i = 1,..., K , (3)

где t – время, <W> = S ij Wij Pij – средняя приспособленность в популяции; uij – параметры, характеризующие интенсивности мутационных переходов Aj --> Ai , uii =0 (i, j = 1,..., K ). Первое слагаемое в правой части уравнения (3) характеризует отбор организмов в соответствии с их приспособленностями, второе слагаемое учитывает условие S i Pi = 1, третье и четвертое слагаемые описывают мутационные переходы.

Отметим, что подобные уравнения используются в модели квазивидов [5], см Лекция 2

Пренебрегая мутациями, мы можем анализировать динамику генов в популяции посредством уравнений:

dPi /dt = Wi Pi - <W> Pi , i = 1,..., K. (4)

Используя (1), (2), (4), можно получить (при условии, что величины Wij постоянны), что

скорость роста средней приспособленности пропорциональна дисперсии приспособленности V = S i Pi (Wi - <W> )2 [1,3]:

d <W>/dt = 2 S i Pi (Wi - <W> )2 . (5)

Таким образом, средняя приспособленность – неубывающая величина. В соответствии с (4), (5), величина L = Wmax - <W> есть функция Ляпунова для рассматриваемой динамической системы (Wmax – локальный или глобальный максимум приспособленности, в окрестности которого рассматривается динамика популяции) [3]. Это означает, что величина L всегда уменьшается до тех пор, пока не будет достигнуто равновесное состояние (dPi /dt = 0).

Уравнение (5) характеризует фундаментальную теорему естественного отбора (Р.Фишер,1930), которая в нашем случае может быть сформулирована следующим образом [3]:

"В достаточно большой панмиктической популяции, наследование в которой определяется одним n-аллельным геном, а давление отбора, задаваемое Wij , постоянно, средняя приспособленность популяции возрастает, достигая стационарного значения в одном из состояний генетического равновесия. Скорость изменения средней приспособленности пропорциональна аддитивной генной дисперсии и обращается в нуль при достижении генетического равновесия."

Описанная модель – простой пример модели, использующей детерминистический подход. В рамках этого подхода был разработан широкий спектр аналогичных моделей, которые описывают различные особенности динамики генных распределений, например, учитывают несколько генных локусов, возраст особей, число мужских и женских особей, пространственную миграцию особей, подразделение популяции на субпопуляции и т.п. Многие из моделей и расчетов были предназначены для интерпретации конкретных генетических экспериментальных данных [1,3,4] .

2.2. Стохастические модели

Детерминистические модели позволяют эффективно описывать динамику распределения генов в эволюционирующих популяциях. Однако эти модели основаны на предположении бесконечного размера популяции, которое является слишком сильным для многих реальных случаев. Чтобы преодолеть это ограничение, были разработаны вероятностные методы теоретической популяционной генетики [1,3,4,6-8]. Эти методы включают анализ с помощью цепей Маркова (в частности, метод производящих функций) [4,7], и диффузионные [1,3,4,6,8] методы.

Ниже мы кратко рассмотрим основные уравнения и характерные примеры применения диффузионного метода. Этот метод достаточно нетривиален и его применение приводит к достаточно содержательным результатам.

2.2.1. Прямое и обратное уравнения Колмогорова

Рассмотрим популяцию диплоидных организмов с двумя аллелями A 1 и A 2 в некотором локусе. Численность популяции n предполагается конечной, но достаточно большой, так что частоты гена могут быть описаны непрерывными величинами. Мы также предполагаем, что численность популяции n постоянна.

Введем функциюj =j (X,t |P,0 ) , которая характеризует плотность вероятности того, что частота гена A 1 равна X в момент времени t при условии, что начальная частота (в момент t = 0) была равна P . В предположении малого изменения частот генов за одно поколение, динамика популяции может быть описана приближенно следующими дифференциальными уравнениями в частных производных [1,3,4,8]:

j/t = - ¶ (Md X j)/¶ X + (1/2)¶ 2 (VdX j)/¶ X 2 , (6)

j/¶ t = Md P j/P + (1/2)Vd P 2 j/¶ P 2 , (7)

где Md X , Md P и VdX , Vd P – средние значения и дисперсии изменения частот X , P за одно поколение, соответственно; единица времени равна длительности одного поколения. Уравнение (6) есть прямое уравнение Колмогорова. (В физике это уравнение называют уравнением Фоккера-Планка), уравнение (7) – обратное уравнение Колмогорова.

Первые слагаемые справа в уравнениях (6), (7) описывают давление отбора, которое обусловлено разностью приспособленностей генов A 1 и A 2 . Вторые слагаемые характеризуют случайный дрейф частот, который обусловлен флуктуациями в популяции конечной численности.

Используя уравнение (6), можно определять динамику частот генов во времени. Уравнение (7) позволяет оценивать вероятности фиксации генов.

Предполагая, что 1) приспособленности генов A 1 и A 2 равны 1 и 1 - s , соответственно и 2) вклады генов в приспособленности генных пар A 1 A 1 , A 1 A 2 и A 2 A 2 аддитивны, можно получить, что величины Md X , Md P и VdX , Vd P определяются следующими выражениями [1,3,4,8]:

Md X = sX (1-X ), Md P = sP (1-P ), Vd X = X (1-X )/(2n ), Vd P = P (1-P )/(2n ) . (8)

2.2.2. Случай чисто нейтральной эволюции

Если эволюция чисто нейтральная (s = 0), то уравнение (6) принимает вид:

j/¶ t = (1/4n2 [X (1-X )j]/¶ X 2 . (9)

Это уравнение было решено аналитически М. Кимурой [1,6]. Само решение имеет сложный вид, основные результаты этого решения сводятся к следующему: 1) в конечной популяции фиксируется только один ген (A 1 либо A 2 ); 2) типичное время перехода от начального распределения к конечному составляет величину порядка 2n поколений. Отметим, что этот результат согласуется с оценками лекции 4 , где была рассмотрена несколько иная модель "чисто нейтральной" эволюции.

2.2.3. Вероятность фиксации гена

Используя уравнение (7), мы можем оценить вероятность фиксации гена A 1 в конечной популяции. Действительно, рассматривая асимптотику при времени, стремящемся к бесконечности( t --> inf ), мы можем положить ¶ j /¶ t = 0 и X = 1 ; тогда аппроксимируя вероятность u (P ) , которую нужно найти, величиной u (P ) = j (1, inf |P,0 )/(2n ) (здесь u (P ) = j(1, inf |P,0 )DX , где DX = 1/2n – минимальный шаг изменения частоты в популяции, см. также [3] для более строгого рассмотрения) и комбинируя (7), (8), мы получаем:

sdu /dP + (1/4n ) d 2 u /dP 2 = 0 . (10)

Решая это простое уравнение при естественных граничных условиях: u (1) = 1, u (0) = 0 , мы получим вероятность фиксации гена A 1 в конечной популяции [1,3,6]:

u (P ) = [1 - exp (- 4nsP )] [1 - exp (- 4ns )]-1 . (11)

Выражение (11) показывает, что если 4ns < < 1 , то имеет место нейтральная фиксация гена: u (P ) » P , если 4ns > > 1, то отбирается предпочтительный ген A 1 : u (P ) » 1; размер популяции nc ~ (4s )-1 есть граничное значение, разделяющее области "нейтрального" и "селективного" отбора.

Итак, математические методы популяционной генетики описывают динамику частот генов в эволюционирующих популяциях. Детерминистические методы используются при описании динамики частот в среднем; стохастические методы учитывают флуктуации в популяциях конечной численности.

3. Молекулярная эволюция: теория нейтральности

Классическая теория популяционной генетики, содержательно основанная на синтетической концепции эволюции, интенсивно развивалась до 1960-х годов, до тех пор, пока не возникли трудности интерпретации экспериментальных данных молекулярной биологии. В лекции 1 я уже отмечал, в 1950-1960-х годах произошла революция в молекулярной биологии. Была определена структура ДНК, расшифрован генетический код, ученые установили общие принципы работы молекулярно-генетической системы живой клетки.

Интенсивные исследования молекулярной биологии привели к серьезным результатам, касающимся биологической эволюции: была оценена скорость аминокислотных замен в белках, а также получены оценки, характеризующие полиморфизм белков.

Анализируя экспериментальные данные, М.Кимура обнаружил, что когда он пытался объяснить эти эксперименты на основе селекции благоприятных мутаций путем Дарвиновского отбора, то возникли серьезные затруднения. В своей книге [6] Кимура подробно описывает идеи, послужившие основанием для изобретения теории нейтральности. Например, в некоторых своих оценках, основанных на Дарвинском отборе, он получил, что для объяснения экспериментальных данных нужно потребовать, чтобы каждая особь в процессе эволюции давала 22 000 потомков. И для того, чтобы проинтерпретировать данные по молекулярной эволюции белков, Кимура предложил теорию нейтральности [6,9].

Основное предположение этой теории состоит в следующем: на молекулярном уровне мутации (замены аминокислот или нуклеотидов) преимущественно нейтральны или слабо вредны (существенно вредные мутации также возможны, но они элиминируются из популяции селекцией). Это предположение согласуется с экспериментально наблюдаемой скоростью аминокислотных замен и с тем фактом, что скорость замен в менее важных частях белков значительно больше, чем для активных центров макромолекул.

Используя математические методы популяционной генетики, Кимура получил ряд следствий теории, которые находятся в довольно хорошем согласии с данными молекулярной генетики [6].

Математические модели теории нейтральности существенно стохастические, т.е. относительно малая численность популяции играет важную роль в фиксации нейтральных мутаций. См. примеры расчетов, приведенных выше.

Но если молекулярные замены преимущественно нейтральны, как возможна прогрессивная эволюция? Чтобы ответить на этот вопрос, Кимура использует концепцию дупликации генов, развитую С.Оно [10]. Согласно теории Кимуры, дупликация генных участков создает дополнительные, избыточные ДНК-последовательности, которые в свою очередь дрейфуют далее за счет случайных мутаций, предоставляя тем самым сырой материал, из которого могут возникать новые, биологически значимые гены (Рис.1).

Рис. 1. Иллюстрация к механизму прогрессивной эволюции в теории нейтральности. Схема появления нового биологически значимого белка. Показаны участки ДНК ( Ii ) и кодируемые ими белки ( Ei ). a) ген I 1 кодирует белок E 1 , b) дупликация гена I 1 , новый участок (справа) кодирует тот же белок E 1 , c) случайный дрейф правого участка, d) возникновение нового биологически значимого белка E 2 кодируемого участком ДНК I 2 .

Заключая наш сжатый обзор теории нейтральности, процитируем пять принципов этой теории [6]. Первые четыре из них – эмпирические, а пятый установлен теоретическим путем.

  1. Скорость эволюции любого белка, выраженная через число аминокислотных замен на сайт в год, приблизительно постоянна и одинакова в разных филогенетических линиях, если только функция и третичная структура этого белка остаются в основном неизменными.
  2. Функционально менее важные молекулы и их части эволюционируют (накапливая мутационные замены ) быстрее, чем более важные.
  3. Мутационные замены, приводящие к меньшим нарушениям структуры и функции молекулы (консервативные замены ), в ходе эволюции происходят чаще тех, которые вызывают более существенное нарушение структуры и функции этой молекулы.
  4. Появлению нового в функциональном отношении гена всегда должна предшествовать дупликация гена.
  5. Селективная элиминация вредных мутаций и случайная фиксация селективно нейтральных или очень слабо вредных мутаций происходят в ходе эволюции гораздо чаще, чем положительный дарвиновский отбор благоприятных мутаций.

4. Другие модели, характеризующие общие закономерности эволюции

Теория нейтральности – одна из наиболее разработанных общих теорий эволюции. Однако есть ряд моделей и концепций, также характеризующих эволюцию на молекулярном уровне, которые в основном дополняют теорию нейтральности. Отметим наиболее известные из них.

В работах Д.С.Чернавского и Н.М.Чернавской [11,12] сделана оценка вероятности случайного формирования нового биологически значимого белка с учетом того, что в белке есть активный центр, в котором замены аминокислот практически недопустимы, и участки, свойства которых не сильно меняются при многих аминокислотных заменах. Там же сделана оценка количества возникающей в геноме информации при появлении нового белка. Полученная оценка указывает на то, что случайное формирование белка было вполне вероятно в процессе эволюции.

Интересна, хотя, по-видимому, не бесспорна, модель блочно-иерархического эволюционного отбора [13,14], согласно которой новые генетические тексты большой длины сначала случайно составляются из коротких текстов, оптимизированных в предыдущие эволюционные эпохи, а после составления оптимизируются. Модель блочно-иерархического эволюционного отбора критически проанализирована в [15].

Блочно-модульный принцип организации и эволюции молекулярно-генетических систем управления обосновывается В.А.Ратнером [16]. Согласно этому принципу эволюция генов, РНК, белков, геномов и молекулярных систем управления на их основе шла путем комбинирования блоков (модулей) снизу доверху, причем модулями, из которых составлялись вновь возникающие молекулярно-генетические системы, служили уже функционирующие макромолекулярные компоненты. По сравнению с моделью блочно-иерархического отбора блочно-модульный принцип более гибок и более реалистичен.

В модели "генов-мутаторов" [17] предполагается, что уровень мутаций может меняться и наследоваться, в результате чего при попадании популяции в новую среду, когда выгоден активный поиск новых свойств, уровень мутаций возрастает, а при длительном нахождении в постоянной среде, где важно сохранение уже найденных свойств, интенсивность мутаций падает.

Интересно проанализировать, как могли возникать достаточно нетривиальные системы обработки информации. Для простейших организмов (вирусов и бактерий) в качестве таковых можно рассматривать регулирование синтеза белков (функциональных и структурных элементов организма) в соответствии с определенной "программой". Например, в процессе онтогенеза фага Т4 происходит образование сложной пространственной структуры, в формировании которой участвуют несколько десятков белков, синтезируемых в соответствии с программой, закодированной геномом фага [18]. Иллюстративная модель эволюционного возникновения подобных "программ жизнедеятельности" предложена [19]. Согласно модели в процессе эволюционного формирования этих программ в генотип закладывается некоторая избыточность, которая приводит к тому, что при небольшой модификации генома часть блоков программ сохраняется. При введении в модель представлений о "генах-мутаторах" наблюдалось поведение, качественно сходное с явлением каскадного мутагенеза [20] – резким возрастанием интенсивности мутаций после дестабилизации генома.

В чрезвычайно интересном цикле работ С.Кауффмана с сотрудниками [21,22] исследуется эволюция автоматов, состоящих из соединенных между собой логических элементов. Отдельный автомат можно рассматривать как модель молекулярно-генетической системы управления живой клетки, при этом каждый логический элемент интерпретируется как регулятор синтеза определенного фермента. Модели Кауффмана позволяют сделать ряд предсказаний относительно "программ" жизнедеятельности клеток. В частности, продемонстрировано, что для одновременного обеспечения устойчивости и гибкости программы число входов логических элементов должно быть ограничено определенным интервалом, а именно составлять величину примерно равную 2-3. Для моделей Кауффмана разработаны эффективные методы анализа на базе статистической физики, эти модели получили широкую известность и исследовались рядом ученых. Подробнее основные результаты этой модели мы обсудим в следующей лекции.

Специальные термины:

1) Диплоидный организм: особь, имеющая два набора хромосом в каждой из ее клеток.

2) Аллель: Одна из различных форм гена, который может быть в заданном локусе.

3) Локус: участок хромосомы, в котором локализован ген.

4) Панмиксия: полностью случайное скрещивание.

Литература

  1. J.F. Crow, M. Kimura. "An introduction to population genetics theory". New York etc, Harper & Row. 1970.
  2. T. Nagylaki. "Introduction to theoretical population genetics ". Berlin etc, Springer Verlag. 1992.
  3. Свирежев Ю.М., Пасеков В.П. Основы математической генетики. М.: Наука, 1982, 511 с.


    29-04-2015, 01:58

Страницы: 1 2
Разделы сайта