Вероятность и правдоподобные рассуждения

большей вероятности суждения приписывается большее число. Для численного выражения вероятностей используется следующая формула: P(q/p), где P обозначает численное значение вероятностной функции, аргументом которой служит высказывание p, а значением функции q. Необходимо, однако, не смешивать численное значение с самой вероятностью, ибо вероятность, согласно Джеффрису, означает разумную степень веры и не тождественна с числом, используемым для ее выражения (7, p. 20).

Аксиома 6. Если pq влечет r, тогда P(qr/p) = P(q/p). Эта аксиома есть расширение аксиомы 3, и утверждает, что все эквивалентные суждения будут иметь одинаковую вероятность при тех же самых данных.

Из перечисленных аксиом могут быть выведены дальнейшие следствия, или теоремы. Само построение теории вероятностей осуществляется Джеффрисом значительно проще, чем Рейхенбахом, который вынужден вводить ряд сомнительных допущений, хотя оба они стремятся найти единую основу для определения и объективной, и логической вероятности. Но если Рейхенбах, как мы видели, идет от частотной интерпретации, подгоняя под нее даже события частные, и допускает субъективную оценку суждений задним числом, то Джеффрис с самого начала говорит об определении вероятности с помощью степени разумной веры. В заключительном историческом обзоре, в 8 главе, он обосновывает свой подход ссылками на концепции таких классиков теории вероятностей, как Лаплас, Бернулли, Бейес, которые “закладывали основания для здравого смысла и индуктивной логики” (7, p. 404). Уже сам заголовок классического труда Я.Бернулли “Искусство догадок” ясно свидетельствует в пользу этого мнения.

По мнению Джеффриса, даже статистики, выступающие в защиту частотной интерпретации, в практических исследованиях руководствуются не столько такими эмпирическими соображениями, а тем более формальными определениями, сколько разумной степенью доверия к высказываемым гипотезам и будущим прогнозам. Как и представители субъективного, или точнее, персоналистского направления в трактовке вероятности, Джеффрис справедливо замечает, что зачастую реальные действия людей гораздо лучше говорят о действительной оценке их суждений, чем чисто словесные формулировки и обоснования.

В отличие от унитаристского подхода к интерпретации вероятности Р.Карнап считает вполне оправданными две основные ее формы, которые он обозначает как вероятность 1 и вероятность 2 .

В последних своих работах он наиболее ясно поясняет различие между этими двумя понятиями вероятности с помощью процесса принятия решений.

Схему такого процесса в общих чертах можно представить так. Существует множество альтернативных, или возможных действий для субъекта X. В некоторый момент времени T субъект должен принять решение из этого множества A 1 , A 2, ... A k , число которых конечно. Правильное решение, соответствующее реальному положению дел, ему неизвестно, но оно находится среди элементов множества B 1, B 2 , ... B m. Если обозначить функцию полезности для X символом U x(O k , m) и вероятность некоторого состояния дел через P(B m), тогда можно определить величину субъективного значения (желательности) возможного действия A k для X в момент времени T:

V x,т(A k)= a м [U x(O к,м) P(B м)],

где P(B м) есть вероятность состояния В к , а сумма охватывает все возможные состояния дел. Другими словами, мы рассматриваем значение действия А к для X как ожидаемую полезность результата этого действия (8, p. 7).

Согласно правилу принятия решения Бейеса следует выбрать такое действие, альтернативу или возможность, которое максимизировало бы значение ожидаемой полезности V. Это требование может быть реализовано двумя способами: во-первых, обычным, практическим или интуитивным путем, во-вторых, путем наложения определенных требований рациональности. Первый подход характеризуют как дескриптивный, или описательный, способ принятия решений, второй – как рациональный. Соответственно этому различают дескриптивную и нормативную (рациональную) теории принятия решений.

В зависимости от выбора теории находится и соответствующая интерпретация вероятности, которая фигурирует в определении ожидаемой полезности. В связи с этим Карнап выделяет два основных понятия вероятности: статистическую (объективную) и персоналистскую (субъективную).

Как уже отмечалось выше, Карнап в отличие от Джеффриса считает статистическую вероятность самостоятельным понятием, не сводимым к другим. Ее область применения не ограничивается математической статистикой, а охватывает все эмпирические науки, в особенности социально-гуманитарные, хотя значительно раньше она стала применяться в физике, химии и биологии.

Под персоналистской он понимает вероятность, которая приписывается высказыванию или событию H некоторым лицом X, другими словами, это – степень веры X в H (8, p. 8). Карнап считает, что следует различать две версии персоналистской вероятности, одну, представляющую фактическую степень веры, и другую – характеризующую рациональную степень веры.

Возникает вопрос: какое понятие вероятности мы должны использовать в теории принятия решений?

В настоящее время большинство статистиков все еще признают единственно законным только статистическое понятие вероятности. Поскольку оно считается объективным и не зависит от веры субъекта, постольку оно вообще неизвестно субъекту заранее, ибо его значение устанавливается только после определения относительной частоты массового события. Поэтому это понятие не подходит для теории принятия решений. Правда, в некоторых ситуациях персоналистская вероятность может быть равна статистической, но в общем случае более целесообразно использовать в этой теории персоналистскую вероятность.

В свою очередь для дескриптивной теории принятия решений персоналистская вероятность выступает в форме действительной, или фактической, веры определенного лица в некоторый момент времени. Эта вера оказывается, таким образом, субъективной или психологической верой лица и ее законы могут быть установлены посредством конкретных психологических исследований. Подобное ее изложение содержится в книге Я.Козельского “Психологическая теория решений”. О степени фактической веры субъекта в высказывание H можно судить по его действиям, например, когда заключаются пари по какому-либо вопросу или делаются ставки в азартных играх. Вероятность как степень разумной веры отличается от фактической веры тем, что на нее накладываются определенные требования, а именно такая вера должна удовлетворять определенным требованиям рациональности. Одним из основных и важнейших требований является условие, чтобы степени вероятности удовлетворяли законам исчисления вероятностей, а тем самым эти степени согласовывались друг с другом. А это означает, что они не могут быть произвольными. Именно этому условию подчиняются все известные персоналистские интерпретации разумной веры. Даже при психологической интерпретации вероятности степени веры устанавливаются таким образом, чтобы они были когерентными, т.е. согласовывались между собой. Поэтому не может быть такого положения, когда совокупная степень вер превышала единицу.

После анализа понятий фактической и рациональной веры Карнап естественно переходит от этих квази-психологических по существу понятий к чисто логическим. Однако индуктивные понятия Карнап истолковывает совсем по-другому, чем большинство не только старых, но и современных авторов. “Они рассматривают, – пишет он, – индуктивные рассуждения как выводы из некоторых известных высказываний, называемых посылками или свидетельствами, к новому высказыванию, обычно называемому законом или отдельным предсказанием” (8, p. 29). Но с этой точки зрения результатом любого конкретного индуктивного рассуждения является принятие нового утверждения. При таком подходе к индукции мы неизбежно попадаем под огонь критики Д.Юма, ибо создается впечатление, что будто бы для такого принятия существуют какие-то рациональные основания. Поэтому целесообразнее рассматривать индуктивные рассуждения относительно гипотезы H при соответствующем свидетельстве E (которое обычно состоит из конъюнкции высказываний) как приписывание ей вероятности, или степени подтверждения, c: c(H/E) = r. В прежних работах Карнап определял степень подтверждения в терминах предложений, но языки, которые при этом использовались, были весьма бедными и не могли выразить, например, предложения о действительных числах и действительных функциях. Впоследнейработе (Jeffrey R., Carnap R. (eds) Studies in Inductive logic and probability. Vol. 1. Berkeley, 1971) он использует термин “событие”, понимая его в достаточно широком смысле, т.е. рассматривая в качестве событий реальные явления и суждения о них. Поэтому вместо сложной и запутанной техники построения описания состояний, структур и измеряющих функций для них он строит систему индуктивной логики с помощью функций степени подтверждения, которые позволяют определить степени рациональной веры.

Основные свойства этих функций задаются с помощью следующих аксиом.

А1. Аксиома нижней границы: C(H/E) ? O.

А2. Аксиома самоподтверждения: C(E/E) = 1.

А3. Аксиома дополнения: C(H/E) + C(H/-E) = 1.

А4. Общий мультипликационный принцип: если E C H возможно, то C(H C H’/E) = C(H/E) ? C(H’/E C H).

Как нетрудно заметить, четыре перечисленные аксиомы аналогичны обычным аксиомам исчисления вероятностей, но отличаются от них просто интерпретацией вероятности в терминах рациональной степени подтверждения. К сожалению, трудность заключается не столько в различных трактовках самого понятия рациональности, сколько в адекватности применения принципов построенной таким способом индуктивной логики для оценки и анализа научных обобщений и законов. Разумеется, простые эмпирические обобщения о свойствах явлений сравнительно нетрудно истолковать с помощью карнаповской логики, но универсальные законы, хорошо подтвержденные опытами и наблюдениями, оказываются в прежней системе индуктивной логики Карнапа имеющими нулевую вероятность, хотя Я.Хинтикка, кажется, попытался преодолеть эту трудность. Безотносительно к этому в основе идейной установки карнаповской школы в неявной форме ощущается тенденция если не свести индуктивную логику к дедуктивной, то максимально сблизить методы их анализа на семантическом уровне. В конце концов процесс индуктивного как и любого правдоподобного рассуждения не ограничивается простым семантическим анализом вероятностного отношения между гипотезой (индуктивным заключением) и ее свидетельствами (посылками), хотя бы потому, что степень подтверждения гипотезы меняется в зависимости от изменения свидетельств. Поэтому самая главная трудность при построении адекватной системы индуктивной логики состоит даже не столько в том, чтобы научиться строить все более мощные формализованные языки, сколько в возможности отобразить формальными средствами процесс перехода.

Другие подходы к интерпретации вероятности

Наряду с рассмотренными интерпретациями вероятности в последние годы все большее признание завоевывает субъективная концепция, с которой мы уже встречались при изложении других концепций. В скрытом виде она фигурирует уже в объективной интерпретации, когда приходится оценивать вероятность отдельного события, не обладающего частотой. Более явно она выступает при логической интерпретации при установлении степени подтверждения и связанных с ней вероятностных мер. Благодаря работам Л.Севиджа, который стал рассматривать субъективные вероятности как степени предпочтения, эта интерпретация нашла признание и среди части статистиков, хотя большинство ее представителей по-прежнему придерживается частотной интерпретации.

Там, где приходится принимать решение в ситуации неопределенности или делать выбор между альтернативными способами действий, всегда возникает вопрос о вероятностной оценке. Очевидно, что для такой оценки нельзя воспользоваться частной интерпретацией, по крайней мере непосредственно, хотя бы потому, что такие измерения можно провести лишь задним числом. Вот почему приходится обращаться к оценке веры субъекта относительно отдельного случайного события или суждения. Именно поэтому такая интерпретация обычно называется субъективной, вследствие чего она подвергалась критике в нашей философской и даже математической литературе.

На первый взгляд кажется, что обращение к таким понятиям, как вера, уверенность, доверие и их синонимам, придает нашим рассуждениям чисто субъективный, психологический характер и вносит в них произвол, ничем недетерминированный характер. В самом деле, люди по-разному оценивают свои степени веры в появление какого-либо события, в правдоподобность определенной гипотезы или предположения. Даже вера отдельного человека может меняться с течением времени. Обычно именно это обстоятельство служит доводом против субъективной интерпретации вероятности, отрицания за ней каких-либо рациональных моментов.

На самом деле в условиях неопределенности вряд ли можно полагаться на какие-либо иные средства для оценки вероятности возможного действия, выбора альтернативы и принимаемого решения. К тому же при практическом применении значения субъективных вероятностей во многом подвергаются рационализации, что дает возможность выбора более приемлемых и правдоподобных решений. По сути дела, другие интерпретации вероятности нестатистического характера строятся на усилении требований рациональности к фактической вере субъектов.

Реальная, фактическая вера субъекта в данный момент времени остается для нас неизвестной до тех пор, пока мы не найдем способа ее измерения с помощью некоторых процедур, выражающих внутреннее состояние веры в соответствующем внешнем ее выражении или проявлении. Давно признано, что лучшим проявлением веры, намерений и внутреннего мира человека являются его действия, поступки и решения. Поэтому еще в 20-х гг. английский логик и математик Ф.Рамзей предложил для оценки степеней субъективной вероятности величины ставок, которые делаются при заключении пари, спора или в азартной игре. Очевидно, что чем выше вера субъекта в появление некоторого события, тем больше его ставка. Но при этом следует избегать заведомо проигрышных пари. Например, если степень веры в наступление некоторого события оценивается как 4/5 и допускается ставка 4 против 1 в заключаемом пари, то нельзя заключать пари по поводу ненаступления этого события со ставкой 2 против 3, соответствующей субъективной вере 2/5. Легко подсчитать, что независимо от того, наступит или не наступит ожидаемое событие, пари в итоге оказывается проигрышным. Если наступит событие, то выигрыш составит 1, а проигрыш 2. Если событие не наступит, то проигрыш составит 4, а выигрыш 3. В чем здесь причина? Оказывается, что величины субъективных вероятностей при этом не были согласованы между собой и противоречили аксиоме исчисления вероятностей, согласно которой сумма вероятностей не должна превышать 1.

Учитывая это, сторонники субъективной интерпретации хотя и допускают любые значения вероятностей, но требуют, чтобы степени субъективных вер согласовывались с аксиомами теории вероятностей. Иначе говоря, теория вероятностей для них выступает как средство рационализации степеней веры. Отсюда становится ясным, что эти степени веры нетождественны чисто психологическим степеням веры субъекта, поскольку они корректируются аксиомами исчисления вероятностей. Еще более жесткие требования предъявляются к ним сторонниками логической интерпретации, которые вводят понятие степени рациональной, или разумной, веры.

Таким образом, перед нами вырисовывается следующая модель поведения субъекта в ситуации неопределенности. В первом случае лицо, производящее действие или принимающее решение, опирается на свою субъективную веру, но степени их должны быть согласованы с аксиомами теории вероятностей, причем последняя не указывает ему, какие именно степени веры следует выбрать. Она просто постулирует, согласуются или нет его степени с теорией. Во втором случае субъект руководствуется рациональными степенями веры и поэтому он во всех ситуациях поступает всегда разумно. Такой рациональный идеал никогда не достижим фактически, тем не менее он может служить в качестве определенного стандарта, с которым может сравниваться поведение реального субъекта в реальных ситуациях неопределенности.

Нередко субъективную интерпретацию называют также бейесовской, поскольку при этом используется известная теорема Бейеса, устанавливающая зависимость между априорными и апостериорными вероятностями событий.

P(H/E) = P(H C E) ,

где P(H/E) обозначает апостериорную вероятность гипотезы H, т.е. вероятность ее после получения свидетельства E,P(E)-априорную вероятность свидетельства E, а P(H CE) – произведение вероятностей гипотезы и свидетельства. Известно, что первичные, априорные вероятности по мере получения все новых и новых эмпирических свидетельств не оказывают существенного влияния на вероятность гипотезы. Но наши первоначальные субъективные оценки вероятности способны корректироваться опытом. При таком подходе субъективные вероятности оказываются априорными допущениями, которые могут уточняться и исправляться в процессе получения новых эмпирических свидетельств.

Таким образом, субъективная вероятность оказывается в известной степени не только рационализированной, но и эмпирически проверяемой. Именно благодаря этому Л.Сэвидж использовал ее для статистических выводов. Однако вместо степеней субъективной веры он вводит степени предпочтения, согласующиеся с аксиомами исчисления вероятностей.

Новый подход к интерпретации вероятности, фигурирующей в статистических законах, предпринял в последнее время Д.Поллок (SYNTHES. Dordrecht, 1992. Vol. 90, n 2). Он называет свою интерпретацию номической, поскольку она тесно связана с истолкованием законов статистического характера. В отличие от этого нестатистические законы он называет номическими обобщениями. Символически такие обобщения могут быть выражены с помощью универсальной импликации: (x) (Ax ® Bx). Например, если x – физическое тело, A – свойство “быть нагретым”, а B – свойство “быть расширяемым”, то это выражает известный физический закон: если тело нагревается, то оно расширяется. В любом таком законе свойство, характеризующее антецедент импликации, должно быть связано с соответствующим свойством консеквента. Иначе говоря, любое x, обладающее свойством A, должно обладать свойством B.

По аналогии с этим можно сказать, что в номической вероятности лишь определенный процент B будут обладать свойством A, или символически: P(B/A) = r.

Поллок считает, что номическая интерпретация применима во всех тех случаях, когда частотная неприменима вовсе или кажется весьма искусственной. Например, по его мнению, располагая симметричной, нефальсифицированной монетой, мы можем без определения относительной частоты выпадения герба или решки сказать, что вероятность выпадения герба будет равна 1/2. Но такая аргументация не вносит ничего нового, ибо основывается на классической интерпретации, базирующейся на симметричности исходов равновозможных событий. Более основательной является ссылка на квантовомеханические вероятности, которые не определяются с помощью частот, а тем не менее они вычисляются.

Номическая интерпретация вероятности заслуживает внимания потому, что она отказывается целиком от истолкования этого понятия в терминах субъективной веры, в том числе и рационализированной с помощью аксиом исчисления вероятностей. Вот почему автор называет свою концепцию объективной. Во-вторых, вероятность в ней отличается от относительной частоты как эмпирического понятия. В то время как относительная частота имеет дело с реальными частотами реальных событий, вероятность представляет собой суждение сослагательного или контрфактического характера. Грубо говоря, она ориентирована не на определение реальной частоты массовых случайных событий, а представляет собой суждение такого рода: что бы случилось с относительной частотой, если бы


10-09-2015, 21:40


Страницы: 1 2 3 4
Разделы сайта