Лекции по экологии

почвенной среды. Этот показатель характеризует аэрация .

Аэрация - естественное или искусственное поступление воздуха в какую-либо среду (воду, почву и т.д.). Она может производиться при помощи технических средств или путем ликвидации преграды (льда, масляной пленки и др.), препятствующей естественному доступу воздуха к поверхности воды, почвы.

Аэрацию почвы обычно затрудняют 2 обстоятельства:

1) уплотнение почвы;

2) насыщение её водой.

3.2.1.2.4. Водородный показатель (рН) и кислотность почвы

Кислотность почвы важнейший показатель. Например, фосфаты легче усваиваются растениями в кислых почвах.

Число рН - реальная концентрация ионов водорода [H+ ], выраженная в единицах водородного показателя:

При равной концентрации ионов Н+ и ОН- - среда нейтральная, а рН = 7. Если [H+ ] больше концентрации гидроксильных ионов [ОH- ], то среда кислая, а рН меньше 7. При [ОH- ] > [H+ ] - cреда щелочная, а рН больше 7.

Например, рН = 1 и рН = 14 соответствуют: [H+ ] = 10-1 моль/л и [H+ ] = 10-14 моль/л.

3.2.1.2.5. Механический состав почвы и размеры минеральных частиц

Структура и механический состав почвы определяются относительным содержанием в ней песка (размеры его частиц: 0,05¸2 мм) и глины (размером < 0,002 мм). Имеется 11 структурных классов почв. Идеальная почва должна содержать приблизительно равные количества глины и песка с частицами промежуточных размеров. В этом случае образуется пористая, крупитчатая структура, и почва называется суглинками (размер частиц ближе к размерам частиц глины, чем песка). Если же преобладают песчаные частицы, то можно говорить о супесях. По основным почвенным показателям суглинки значительно превосходят глину и песок, что хорошо видно из табл. 3.1.

Таблица 3.1. Сравнительные показатели (характеристики) для различных типов почв

Тип почвы

Инфильтрация

Водоудержи-

вающая спо-

собность

Ионно-

обменная

емкость

Аэрация

Обрабатываемость

Песок

Глина

Суглинки

+++

+

++

+

++++

++

+

++++

++

+++

-

++

+++

-

++

3.2.1.3. Почва и глобальные проблемы

3.2.1.3.1. Наиболее опасные воздействия человека на почву

1. Загрязнение химическим веществами.

2. Антропогенная эрозия.

3. Засоление (главным образом, за счет чрезмерного водного орошения).

4. Заболачивание.

5. Добыча полезных ископаемых (главным образом - горючих, а также металлических руд).

6. Использование плодородной почвы под строительство.

3.2.1.3.2. Загрязнения почвы

Главными загрязнителями являются промышленные предприятия (черной и цветной металлургии, энергетики, химической промышленности), вызывающие загрязнение токсичными веществами, включая тяжелые металлы, а также компоненты, способствующие выпадению кислотных дождей. Автотранспорт дает загрязнение свинцом и утечками топлива, быт и строительство (бытовые отходы, свалки), сельское хозяйство (загрязнение пестицидами, а иногда и перенасыщение почвы удобрениями). Значительное загрязнение дают утечки топлива (аварии нефтепроводов, а также при операциях транспортировки), могильники с радиоактивными отходами и токсичными веществами и др. источники.

3.2.1.3.3. Эрозия почвы и опустынивание земель

Эрозия почвы (от лат. erosio - разъедание) - это процесс разрушения верхних наиболее плодородных слоев почвы и подстилающих пород под действием воды, ветра, вследствие хозяйственной деятельности человеческого общества, а также животных, что приводит и к нарушению структуры почвы, а главное - к уменьшению плодородия почвы.

Археологи установили, что упадок многих ранее могущественных цивилизаций был вызван не внешними врагами, а медленным экологическим самоубийством - неспособностью сохранить земельные и водные ресурсы. Например, Северная Африка, некогда снабжавшая зерном Римскую империю, теперь по большей части представляет собой пустыню. Аналогично, ключевым фактором упадка некогда процветающей в Центральной Америке культуры Майя, вероятно, была потеря почвенного плодородия вследствие эрозии.

За последние 25 лет площади сельскохозяйственных угодий сократились на 33 млн га, несмотря на ежегодное вовлечение в сельскохозяйственный оборот новых земель. Подсчитано, что земельные ресурсы на душу населения уменьшаются на 2 % за год, плодородные земли (угодья) на 6-7 %. Русские экологи А.В. Яблоков и С.А. Остроумов (данные 1985 г.) считают, что ежегодно в мире площади пашен и пастбищ под влиянием деятельности человека сокращаются на 5-8 млн га. Из них в результате эрозии теряется примерно 3 млн га, подвергается различным видам опустынивания - 2 млн га и исключается из пользования в результате загрязнения - около 2 млн га. Пустыни интенсивно наступают и занимают все большие территории. Так, отмечен в некоторые годы рост пустыни Сахара со скоростью порядка 48 км в год. Потери почвы в основном вследствие вышеуказанных факторов, а также рост численности населения обусловливают интенсивное уменьшение площади почвы на душу населения. Считается, что в 1950 г в мире на душу населения приходилось 0,24 га пашни, а к 1983 году эта площадь уже уменьшилась до 0,15 га, в России же сейчас на душу населения приходится большая площадь - около 0,9-1 га на человека. Следует, однако, учитывать, что основные площади пахотных земель России расположены в районах с неблагоприятными условиями для земледелия, где имеется недостаток, либо избыток тепла и влаги. Однако вместо того, чтобы усвоить уроки прошлого, мы склонны повторять ошибки в глобальном масштабе. По оценке Института мировой статистики потери почвы от эрозии в мире из года в год продолжают расти. В отличие от землетрясений и извержений вулканов это бедствие надвигается постепенно, но это не уменьшает значения проблемы.

3.2.1.3.3.1. Типы эрозии почвы

1. Геологическая: а) водная; б) ветровая.

2. Антропогенная.

3. Зоогенная (пастбищная).

В водной эрозии в качестве разрушающей силы выступает текущая и падающая вода. Водную эрозию подразделяют на плоскостную (равномерно сносится водными потоками поверхностный слой почвы), струйчатую (заметно проявляются слабые очаги эрозии по местам концентрации водных потоков), бороздчатую и овражную (как следующие две стадии струйчатой, сопровождающиеся очаговым разрушением почв и даже грунтов с выносом больших масс продуктов эрозии в водные источники, из-за этого на 1 га пашни приходится до 5-10 км оврагов), ирригационную (связана с подачей на поверхность больших масс воды, которая не успевает впитываться и стекает по поверхности, а часто сопровождается и засолением почв), капельную (разрушение структуры почв каплями воды, что приводит к ее уплотнению и уменьшению водопроницаемости), русловую (например, действие речных водных потоков), а также подземную (боковую и глубинную) и др.

Ветровая эрозия (или дефляция ) - это разрушение почвы за счет движения воздуха (ветра). Она сильно зависит от скорости ветра и его продолжительности, степени от открытости пространства (рельефа, наличия растительности и особенно леса), а также от типа и структуры почвы. Эрозию усиливает сухость почв обеднение их гумусом. Особенно велика опасность ветровой эрозии в степях (характерный пример, освоение у нас целинных земель за Уралом), полупустынях и пустынях.

Антропогенная эрозия (разрушение почвы в результате хозяйственной деятельности человека) включает: механическую и транспортную (вызывает нарушение структуры почвы, например, при использовании тяжелой сельскохозяйственной техники или неверных способах обработки земель), строительную (карьеры, вырубка лесов, строительство на плодородных землях), химическую (загрязнение веществами приводилось выше), пастбищную (вытаптывание и уплотнение почвы животными, обкусывание растений, чрезмерное увеличение детрита в почве из-за длительного выпаса животных на одном месте и др.), а также водную антропогенную (капельная, струйчатая, овражная, ирригационная , которые были рассмотрены выше). При этом особо нужно остановиться на орошаемом земледелии. Сейчас в мире около 250 млн га орошаемых земель, а в России - примерно 6 млн га. При этом кроме ирригационной эрозии поливные почвы часто подвергаются так называемому вторичному засолению . Избыточная влага постепенно проникает до грунтовых вод и обусловливает повышение их уровня. За короткое время грунтовые воды с глубины 20-30 м могут близко подниматься и даже выходить на поверхность почвы. При испарении воды с поверхности растворенные в этих водах соли накапливаются в поверхностном слое почвы. Это и есть вторичное засоление, которое, в частности, можно оценить и по увеличению показателя плотности почвы, ведь ранее указывалось, что плотность черноземов примерно 1,1-1,2 г/см3 . Это ведет к уменьшению урожайности почвы и другим неблагоприятным последствиям. Первичное засоление (образование солончаков) происходит естественным порядком без участия человека.

3.2.1.3.3.2. Основные причины ускоренной эрозии

1. Неверные методы земледелия (введение монокультур, неправильное орошение и обработка почвы);

2. Перевыпас животных (пастбищная эрозия - рассматривалась выше);

3. Сведение лесов (леса регулируют поверхностный и подземный сток, химический состав почвы - наличие солей и детрита, определяют климатические условия, включая воздействие ветра).

3.2.1.3.3.3. Предупреждение эрозии почвы

С этой целью проводятся зональные и межзональные мероприятия, включающие: агротехнические, гидротехнические и организационно-хозяйственные. Примеры: соблюдение севооборотов (пропашные культуры, например, кукуруза, картофель, должны сменяться посевами, скрепляющими почву корнями, например травосмесями), проведение контурной вспашки (по горизонталям рельефа), использование техники с малым удельным давлением на почву, создание полезащитных полос, разумная химизация (биологическая защита культур вместо использования пестицидов, селекция) и орошение земель, умеренные нагрузки в агроэкосистемах, регулирование выпаса животных и другие направления.

В заключение необходимо отметить, что самоочистка и естественное восстановление почвенного покрова на нашей планете протекают очень медленно по сравнению с самоочисткой атмосферы и гидросферы.

3.2.2. Главные направления защиты земельного фонда

1. Максимально полное и комплексное извлечение всех полезных компонентов из природных месторождений (меньше отходов, отвалов);

2. Экономное использование сырья и топлива;

3. Разработка экологически чистых источников энергии;

4. Глубокая очистка отходов от токсичных веществ;

5. Разработка безотходных технологий и создание предприятий, работающих по замкнутому циклу (например, из навоза получают биогаз);

6. Воссоздание лесов;

7. Рациональное использование сельскохозяйственных земель;

8. Рекультивация (восстановление и повторное использование земель в местах добычи полезных ископаемых).

3.3. Атмосфера Земли и глобальные проблемы

3.3.1. Общая характеристика атмосферы

Атмосфера - внешняя, газоподобная оболочка планеты, которая, с одной стороны, непосредственно прилегает к земной поверхности, а, с другой стороны, постепенно переходит в космический вакуум.

Важнейшие функции атмосферы :

1) она является необходимым источником, обеспечивающим жизнь в биосфере (определяет климат на планете, ускоряет процессы кругооборота веществ и самоочистки в биосфере и др.);

2) подобно “чехлу” защищает живые организмы на нашей планете от пагубного влияния космического излучения.

Масса атмосферы составляет около 5,9×1015 т.

3.3.2. Строение атмосферы

Атмосфера имеет слоистое строение, то есть состоит из нескольких сфер, между которыми располагаются переходные слои - паузы. В сферах изменяется химический состав, температура и давление.

3.3.2.1. Тропосфера и состав воздуха

Наиболее плотный слой воздуха, прилегающий к земной поверхности, - это тропосфера . Толщина ее изменяется так: в средних широтах (до 10-14 км) над уровнем моря, на полюсах - (до 7-10 км), над экватором - (до 16-18 км). При этом среднее значение (примерно 11-13 км). Масса тропосферы составляет 4/5 от всей массы атмосферы. Средний состав атмосферного воздуха представлен в табл.3.2.

Таблица 3.2. Состав сухого атмосферного воздуха у земной поверхности

Компоненты

Содержание, в объем. %

Компоненты

Содержание, в объем. %

Азот ( N2 )

78,09

Оксид азота ( NO )

2,5×10-4

Кислород ( О2 )

20,94

Метан ( СН4 )

1,5×10-4

Аргон ( Ar )

0,93

Диоксид азота ( NO2 )

1,5×10-4

Углекислый газ (СО2 )

О,034-0,035

Диоксид серы ( SO2 )

1×10-4

Неон ( Ne )

1,8×10-3

Водород ( Н2 )

5×10-5

Гелий ( Не )

5,2×10-4

Угарный газ ( СО )

10-5

Криптон ( Kr )

1×10-4

Озон ( О3 )

2×10-6

Ксенон ( Хе )

8×10-6

Аммиак ( NH3 )

10-6

Другие составляющие воздуха: водяной пар, пыль, сажа и иные загрязнители, включая антропогенные. Наиболее в широких пределах изменяется содержание в воздухе водяного пара и пыли, что зависит от множества причин. При этом содержание водяного пара значительно убывает с высотой от поверхности Земли. В результате испарения воды с земной поверхности (особенно с Мирового океана) и в результате процессов конденсации образуются облака и затем выпадают осадки. Большая часть облачности присутствует в тропосфере (особенно на высоте до 1,5-2,5 км от поверхности Земли). Примерно 50 % всей земной поверхности закрыто облаками. Главный источник тепла на Земле - солнечная энергия, но тропосфера в основном нагревается от Земли (отдается накопленная энергия). При этом нельзя не учитывать процессы рассеивания солнечной энергии, а также задержку тепла в приземном слое особенно из-за антропогенных выбросов СО2 , создающих парниковый эффект, что в целом приводит к увеличению доли инфракрасного (теплового) излучения в тропосфере. Температура же в приземном слое колеблется в пределах примерно от (+500 С) до (-500 С). В целом с удалением от поверхности Земли температура в пределах тропосферы уменьшается примерно на 0,5-0,6 градуса на каждые 100 метров. С высотой разряжение воздуха возрастает, а атмосферное давление уменьшается. Ветровые потоки в тропосфере очень разнообразны.

Выше тропосферы находится тропопауза (так, тропическая на высоте 16-18 км, а полярная на высоте 9-10 км от земной поверхности). В тропопаузе нет столь разнообразных ветровых потоков как в тропосфере и температура практически постоянна. Тропопауза как бы защищает биосферу от чрезмерных потерь тепла в космическое пространство.

3.3.2.2. Стратосфера и защитный “озонный слой”

В следующем слое (стратосфере ) с высотой концентрация воздуха в целом продолжает уменьшаться, но при этом начинает увеличиваться концентрация озона О3 (это так называемый “озонный экран”), который располагается у полюсов с высоты примерно 9 км, а у экватора – на расстоянии 18 км от земной поверхности. Максимума содержание озона достигает приблизительно на высоте 22-25 км (концентрация озона уровня 0,01-0,06 мг/м3 , то есть на несколько порядков выше, чем в тропосфере). Однако, если содержащийся в границах экрана озон выделить в чистом виде, то слой его составит 3-5 мм. Содержание озона выражается в сантиметрах (0,3-0,5) или в единицах Допсона (миллиметры, увеличенные в 100 раз - 300-500 ед.). Из-за наличия “озонного экрана” стратосферу часто называют озоносферой. Главная роль стратосферы (благодаря “озонному экрану”) - это защита биосферы от жесткого ультрафиолетового излучения.

В 1930 году английский геофизик С. Чепмен для объяснения постоянной концентрации озона в стратосфере предложил схему (из четырех реакций), известную нам сейчас под названием - цикл Чепмена :

h n

1) О2 ® 2О (при действии ультрафиолетового излучения с l<242 мкм);

2) О + О2 + М ® О3 + М;

3) О + О3 + К ® 2 О2 + К;

h n

4) О3 ® О2 + О (защита от ультрафиолетового излучения, происходит поглощение в области l = 240-320 мкм).

Первая и четвертая реакции по механизму - фотохимические (протекают под действием солнечной радиации), вторая и особенно третья реакции по механизму - каталитические. Так, в третьей реакции роль катализатора К может выполнять оксид азота NO, который образуется под действием жесткого солнечного излучения, а также при грозовых разрядах и при антропогенных выбросах (например, выбросы из двигателей реактивных самолетов в стратосфере). Упрощенно механизм катализа может быть представлен следующими реакциями:

О3 + NO ® NO2 + O2

NO2 + O ® NO + O2 ,

то есть концентрация оксида азота NO не меняется, а концентрация озона О3 снижается.

В стратосфере имеется облачность, хотя в сравнении с тропосферой она незначительна. Протяженность стратосферы (в среднем до высоты 45 км от поверхности Земли). Температура в пределах этого слоя сначала несколько уменьшается, но с высоты 22-25 км (где значительная концентрация озона) начинает увеличиваться и на верхней границе стратосферы близка 00 С. Причина этого, по мнению климатологов, в том, что в результате поглощения ультрафиолетового излучения “озоновым экраном” происходит преобразование лучей в инфракрасные тепловые.

В стратопаузе , имеющей


29-04-2015, 04:46


Страницы: 1 2 3 4
Разделы сайта