Строительство и заканчивание скважин

Министерство образования Российской Федерации

Уфимский Государственный Нефтяной

Технический Университет

Кафедра бурения

нефтяных и газовых скважин

Курсовой проект по дисциплине

“Заканчивание скважин”

Выполнил:

ст. гр. ГБ-98-01 /Диндарьянов А.Р./

Проверил: /Сакаев Р.М. /

Уфа 2002


Введение

В данном проекте рассматриваются вопросы заканчивания скважины . Исходные материалы были получены автором проекта во время прохождения второй производственной практики в Мегионском УУБР.

Заканчивание скважин является важным этапом в процессе строительства скважины. При этом неправильные расчёты или несоблюдение технологии может привести к значительному материальному ущербу.

По мнению автора проекта ныне применяемые технологии не всегда приводят к нужному результату. Следует применять более современные методы: эксплуатация скважин открытым забоем (если это возможно), установка фильтров, использование устройства селективной изоляции пластов и др.

Также требуют рассмотрения вопросы цементирования скважин. В УУБР имели место случаи недоподъёма цемента до заданной глубины и другие осложнения при креплении скважин.

Для проектирования выбрана скважина № 407 куста № 49 Покомасовского месторождения, которое входит в группу площадей разбуриваемых Мегионским УУБР


1 Общие сведения о районе ведения работ

Площадь,месторождение Покомасовское

Год ввода площади в бурение 1996

Область Тюменская

Округ Ханто-Мансийский Район Нижневартовский

Температура воздуха

-средне годовая, с -40 -30

-наибольшая летняя, с +35

-наименьшая зимняя, с -58

Максимальная глубина промерзания грунта м, 2,0

Продолжительность отопительного периода, сут 277

Преобладающее направление ветров

-зимой юг-з

-летом с-в

Наибольшая скорость ветра, м/с 21

Многолетнемерзлые породы, м

-кровля 100

-подошва 350

Рельеф местности Равнинный, слабо всхолмленный

Состояние местности Заболоченная, с озерами и реками

Толщины-снежного покрова,см от 50 до 160

-почвенного слоя, см 30

Растительный покров Смешанный, сосново-березовый

Категория грунта Торфяно-болотные пески, суглинки, супеси, глины


2 Литолого – стратиграфическая характеристика разреза скважины

Стратиграфический разрез скважины, элементы залегания и коэффициент кавернозности пластов.

Таблица 1

Глубина залегания, м Стратиграфическое подразделение Элементы залегания (падения) пластов по подошве

Коэффициент кавернозности интервала

От

(кровля)

До

(подошва)

название

индекс

угол
Град. Мин.
1 2 3 4 5 6 7

0

50

150

240

340

520

700

800

950

1120

1140

1980

2100

2450

50

150

240

340

520

700

800

950

1120

1140

1980

2100

2450

2615

Четвертичные отл.

Журавская свита

Новомихайловская св.

Алтымская свита

Чеганская свита

Люлинворская свита

Талицкая свита

Ганькинская свита

Берёзовская свита

Кузнецовская свита

Покурская свита

Алымская свита

Вартовская свита

Мегионская свита

Q

P2/3

P2/3

P1/3

P1/3-P3/2

P2/2

P1

K2

K2

K2

K2+K1

K1

K1

K1

-

-

-

-

-

-

-

-

-

-

1

1

1

1

-

-

-

-

-

-

-

-

-

-

-

-

-

30

1.45

1.45

1.45

1.45

1.45

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25


Литологическая характеристика разреза скважины.

Таблица 2
Индекс стратиграфического подразделения Интервал

Описание горной породы

От

(вверх)

До

(низ)

1 2 3 4

Q

P2/3

P2/3

P1/3

P1/3-P3/2

P2/2

P1

K2

K2

K2

K2+K1

K1

K1

K1

0

50

150

240

340

520

700

800

950

1120

1140

1980

2100

2450

50

150

240

340

520

700

800

950

1120

1140

1980

2100

2450

2615

Пески, глины, суглинки

Пески, глины

Пески, глины, алевролиты

Глины, пески

Глины

Глины, опоки

Глины

Глины

Глины, опоки

Глины

Глины, пески, песчаники, алевролиты

Глины, алевролиты, аргиллиты, песчаники

Аргиллиты, песчаники, алевролиты, глины

Аргиллиты, алевролиты, песчаники


Давление и температура по разрезу скважины.

Таблица 3
Индекс стратиграфического подразделения Интервал, м Градиент

От

(вверх)

До

(низ)

Пластовое

давление

Гидроразрыва

пород

Горного

давления

Геотермический

Величина

кгс/см2

на м.

Источник получения

Величина

кгс/см2

на м.

Источник получения

Величина

кгс/см2

на м.

Источник получения

Величина

0 С на 100 м.

Источник получения
1 2 3 4 5 6 7 8 9 10 11

Q – P1/3

P1/3 – K2

K2

K2 – K1

K1

0

500

950

1140

1980

500

950

1140

1980

2615

Рпл =

Ргд.стат

0,100

0,100

0,100

0,100

Расчёт

Расчёт

Расчёт

Расчёт

Расчёт

0,2

0,2

0,2

0,2

0,2

Расчёт

Расчёт

Расчёт

Расчёт

Расчёт

0,22

0,22

0,22

0,22

0,22

Расчёт

Расчёт

Расчёт

Расчёт

Расчёт

3,5

3,5

3,5

3,5

3,5

РФЗ

РФЗ

РФЗ

РФЗ

РФЗ


Физико – механические свойства горных пород по разрезу скважины.

Таблица 4

Индекс

страти-графичес-

кого подраз-деления

Интервал, м

Краткое названиегорной

породы

Плот-ность, г/см3

Порис-тость, г/см3

Прони-цаемость, Дарси

Глинисость,

%

Карбонатность,

%

Предел

теку-чести,

кгс/мм2

Твёрдость, кгс/мм2

Коэффициент пластичности

Абразивность

Категория

породы по

промысловой

классификации

(мягкая, средняя и т.п.)

От

(верх)

До (низ)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

К2+К1

К1

(ПК 19)

К1

(БС 10)

К1

(БС 11)

1140

1915

2450

2545

1865

1930

2470

2565

песок

песчаник

песчаник

песчаник

2,0

2,10

2,14

2,17

23-36

24-32

20

19

0,5

0,152

0,152

0,152

12-18

21-23

10

11

3-10

3-16

3-10

3-10

6-17

9-213

9-213

9-213

-

14-234

14-234

14-234

-

1,1-4,5

1,1-4,5

1,1-4,5

2

6-9

3-9

3-9

М

М, С

С

С


3 Обоснование конструкции скважины применяемой на

данной площади

Для предотвращения разливов бурового раствора е на устье устраивается шахта с заглублением на 2 м от поверхности.

При бурении под кондуктор проходят сквозь слой рыхлых и неустойчивых песчаников и глинистых пород люлинворской свиты.

Осложнения при прохождении отложений люлинворской свиты связаны с тем, что люлинворские глины могут испытывать пластическую деформацию в сторону наименьшего сопротивления, в результате чего может происходить сужение вплоть до полного перекрытия сечения ствола бурящейся скважины. В связи с этим требуется решать основную проблему – укрепление стенок скважины. Для бурения под кондуктор предусматривается использовать остаток раствора, оставшийся от бурения предыдущей скважины, и свежеприготовленный раствор из бентонитового глинопорошка, обработанный химическими реагентами.

Кондуктор диаметром 245мм должен спускаться на глубину не менее 50м ниже ММП т. е на 400м. Учитывая вероятные осложнения при дальнейшем углублении скважины кондуктор спускается на глубину 750м. Цементируется до устья.

При бурении под эксплуатационную колонну основные проблемы, которые требуется решать, следующие: предупреждение нефтегазопроявлений, предупреждение прихвата бурильного инструмента при прохождении через проницаемые пласты и обеспечение максимально возможной степени сохранения коллекторских свойств продуктивных пластов. Эксплуатационная колонна диаметром 146мм спускается на проектную глубину и цементируется до уровня , на 100м выше башмака кондуктора. Глубины скважин колеблются от 2000-3000 м в зависимости от назначения скважин. Максимальный отход забоя 1000м.

Расчитаем индексы давления по следующей формуле из [ 1 ]:


.

Результаты расчёта сведём в таблицу 5.

Таблица 5

Интервал

Литология

Рпл

МПа

Рпогл

МПа

КА

Кпогл

0-500

Q-P1/3

4,9

9,8

0,99

1,99

500 – 950

Р1/3-К2

9,3

18,6

0,99

1,99

950-1140

К2

11,2

22,4

1

1,99

1140-1980

К2-К1

19,4

33

1

1,69

1980-2615

К1

25,7

41

1

1,59

По результатам расчёта построим график 1

4 Оборудование устья скважины

Выбор колонной головки:

Рупл -gL

Ру =25,7*106 -840*9,8*2615=4,1 МПа


Выбирается колонная головка ОКК1-14-245-168.

Предлагается выбрать схему обвязки ПВО применяемую на данной площади.


Рис. 1 Схема обвязки противовыбросового оборудования.

1-Впомогательный пульт; 2-станция гидравлического управления; 3-разъемный желоб; 4-фланцевая катушка; 5-универсальный превентор; 6-плашечный превентор; 7-манометр с запорным и разрядным устройствами и разделителем сред; 8-задвижка с ручным управлением; 9-регулируемый дроссель с ручным управлением; 10-отбойная камера с разрядным устройством; 11-сепаратор; 12-задвижка с гидравлическим управлением; 13-устьевая крестовина; 14-обратный клапан; 15-фланец; 16-пульт управления гидроприводным дросселем; I-блок дросселирования; II-в систему сжигания газа; III-в систему очистки; IV-прямой сброс; V-линия дросселирования; VI-устье скважины; VII-линия глушения; VIII-к буровым насосам; IX-к насосным установкам или прямой сброс; X-блок глушения.

5 Технологическая оснастка обсадной колонны

Кондуктор комплектуется трубами отечественного производства с резьбой ОТТМ. На нижней трубе устанавливается башмак БК-245, на следующей трубе устанавливается дроссельный обратный клапан ЦКОД 245-2 без шара. Центраторы ЦЦ-4-245/295 устанавливаются через 50 метров по длине кондуктора.

Эксплуатационная колонна комплектуется трубами с резьбой ОТТМ. Низ эксплуатационной колонны оснащается следующими технологическими элементами (снизу вверх): башмак БК-146; перфорированный патрубок обратный клапан ЦКОД-146 без шара, пакера ПГПМ-146-1; спиральные (турбулизирующие) жесткие центраторы ЦСЖ-146, центрирующие пружинные фонари, устанавливаются в интервале интенсивного набора параметров кривизны с целью надежного центрирования эксплуатационной колонны и соответственно качественного цементирования интервала скважины выше пакера ПГПМ-146-1.

По мнению автора применеие пружинных фонарей не всегда оправдано.Следует применять (на ответственных участках) центраторы с изменяемой геометрией. Несмотря на их высокую стоимость качество крепления при их использовании значительно увеличивается.

Таблица 6

Конструкция Тип резьбового соединения Герметизирующее средство
Кондуктор ОТТМ Р-2МВП, Р-402
Эксплуатационная колонна ОТТМ Р-402, ГТМ-3

6 Подготовка ствола к спуску и спуск обсадных колонн

1 .Запрещается приступать к спуску обсадных колонн в скважину, осложненную поглощением бурового раствора, флюидопроявлениями, осыпями и обвалами, затяжками и посадками бурильной колонны.

2.Для предотвращения осложнений в процессе спуска кондуктора ствол скважины шаблонируется КНБК, которой закончили бурение под кондуктор. Перед спуском кондуктора скважина промывается в течение двух циклов.

3.По достижении бурением проектной глубины производится промывка скважины в течение двух циклов. Аналогично производится промывка после заключительного каротажа.

При осложнениях ствола (посадки инструмента, наличие уступов, сужений и т.п.), а также в случае простоев или продолжительности каротажа более 12ч. производится проработка ствола скважины КНБК, использовавшиеся при последнем долблении. Скорость проработки в интервалах осложнений не более 100-120м/час. Максимальная скорость спуска инструмента с промывкой не более 4м/с. При подъеме КНБК обеспечивается постоянный долив.

4.Спуск обсадной колонны осуществляется в соответствии со следующими требованиями:

· спуск осуществляется на клиновых захватах, соответствующих размеру и массе обсадной колонны;

· резьбовые соединения докрепляются машинными ключами с моментомером.

· скорость спуска эксплуатационной колонны в интервале до кровли покурской свиты не должна превышать 1,0 м/с, ниже 0,4 м/с

· промежуточную промывку ствола в неосложненной скважине производят с глубины 1000 м через каждые 300 м спуска обсадных труб;

промежуточную промывку при возникновении осложнений (посадки, затяжки и т.п.) проводят, начиная с интервала возникновения осложнения через каждые последующие 200м спущенных труб; для предотвращения прихвата при заполнении и промывках следует колонну держать в подвешенном состоянии и периодически расхаживать; циркуляцию восстанавливают одним насосом; продолжительность промывки на конечной глубине должна быть не менее одного цикла; давление на устье при промывке не должно вызывать гидроразрыва пород и поглощения; в случае обнаружения поглощения переходят на промывку насосом со сниженной подачей; при потере циркуляции колонну поднимают до глубины, на которой проводилась предыдущая промывка и восстанавливают циркуляцию при минимальной подаче. При возобновлении спуска повторное использование ранее извлеченных из скважины обсадных труб запрещается.

Спуск обсадных колонн проводятся по плану, составленному буровым предприятием и утвержденному в установленном порядке. К плану прилагаются данные для расчета колонны, коэффициенты запаса прочности колонны, результаты расчета колонны, а также акт о готовности буровой установки к спуску колонны. Особое внимание должно уделяться подготовке ствола скважины перед спуском эксплуатационной колонны с пакером (при необходимости проводятся работы по шаблонированию или проработке ствола скважины при заданных параметрах бурового раствора). Место установки пакера в стволе скважины указывается геологической службой бурового предприятия на основании данных геофизических исследований скважины. Не допускается установка пакера в зонах каверн.

При спуске обсадной колонны с пакером рекомендуется производить профилактические промывки скважины при обязательном применении фильтра, устанавливаемого под рабочей трубой. При появлении посадок обсадной колонны необходимо снижать скорость спуска обсадной колонны при прохождении пакером интервала ствола скважины, склонных к сужению, чтобы предотвратить гидроразрыв пластов. Не следует допускать при спуске обсадной колонны с пакером посадок ее на величину, превышающую 15% от веса спущенной колонны в вертикальном стволе и 30% - в наклонном. При превышении спуск колонны необходимо прекратить и скважину промыть до устранения посадок. По окончании спуска обсадной колонны скважина промывается до выравнивания параметров бурового раствора.


7 Расчёт обсадной колонны

Основными расчётами обсадных колонн, являются расчёты на наружное и внутреннее избыточное давление и расчёт на растяжение.

Исходные данные для расчёта эксплуатационной колонны.

Таблица 7

Наименование Размерность Условное обозначение Численное значение
1 2 3 4

Расстояние от устья скважины:

- до башмака колонны

- до башмака предыдущей колонны

- до уровня цементного раствора

- до уровня жидкости в конце эксплуатации

- докровли продиктивного пласта

Плотность:

- опрессовочной жидкости

- бурового раствора колонной

- цементного раствора за колонной

- облегчённого цементного раствора за колонной

- жидкости в колонне

Длина участка цементного раствора по вертикали

Длина участка глиноцементного раствора по вертикали

Давление опрессовки на устье

Пластовое давление в кровле продуктивного пласта

м

м

м

м

м

г/см3

г/см3

г/см3

г/см3

г/см3

м

м

МПа

МПа

L

L0

h

hкэ

hпп

H1

H2

Pоп

Рпл

2615

630

530

1200

2450

1.00

1.12

1.83

1.48

0.84

945

1140

13.7

25.7

Расчёт на внутреннее давление действующее на колонну.

Определим давление на устье при условии, что скважина заполнена пластовой жидкостью:

.


Определим давление опрессовки на забое:

.

Где - опрессовочное давление на устье скважины.

Определим давление в конце эксплуатации:

.

Построим график внутренних давлений.

График 2.

Расчёт на наружное давление действующее на обсадную колонну.

В не зацементированном интервале заполненным промывочной жидкостью, наружное давление определяется, как гидростатическое от столба промывочной жидкости.

.


В зацементированном интервале до затвердевания цемента, давление определяется по давлению столба промывочной жидкости и цементного раствора.

.

В случае когда обсадная колонна зацементирована разной плотности, то допускается использовать среднюю плотность раствора с учётом длины каждого интервала.

.

Отсюда получим наружное давление до затвердевания цемента:

.

Определим наружное давление после затвердения цемента:

,

где - гидростатическое давление столба промывочной жидкости;

- гидростатическое давление жидкости содержащейся в порах затвердевшего цемента.

Построим график наружных давлений.


График 3.

Определим внутренние избыточные давления действующие на обсадную колонну.

В общем случае внутренние давления определяются как разность внутренних и наружных давлений на один и тот же момент времени, когда внутреннее давление в колонне достигает максимальных значений. Как правило это бывает при опрессовке обсадной колонны. Избыточное давление определяется для характерных точек, а распределение давления между ними принимается линейно.

По графику 1 и 2 определим характерные точки:

При определении внутреннего избыточного давления в продуктивной зоне пласта вне осложнённых условий, вводится коэффициент разгрузки цементного кольца – К. Это обусловлено допущениями которые приняты при составлении методики расчёта. Для обсадных колонн диаметром 146 мм, К=0,25.

Определим наружные избыточные давления.

Наружные избыточные давления определяются как разность наружных и внутренних давлений на момент когда они достигают максимальных значений. Как правило это относится к моменту эксплуатации скважины. Избыточное давление определяются для характерных точек, а распределение давления между ними принимается линейно.

При определении наружного избыточного давления в продуктивной зоне пласта вне осложнённых условий, вводится коэффициент разгрузки цементного кольца – К. Для обсадных колонн диаметром 146 мм, К=0,25.

Построим график внутренних и наружных избыточных давлений.

График 4.

Рассчитаем обсадную колонну.

Расчёт начинаем снизу вверх подбирая колонну исходя из расчёта на наружное давление и проверяем полученные данные расчётами на внутреннее давление и растяжение.

Выбираем трубы из [2], для 1 секции d=146мм, =7,7мм, []=24,3 МПа, []=35МПа, []=1254кН, q=0,265кН, группы прочности Д, где

d- диаметр обсадной колонны;

- толщина стенки обсадной трубы;

[] – допустимое сминающее давление;

[] – допустимое внутреннее давление при котором возникает предел текучести материала трубы;

[] – допустимая страгивающая нагрузка определённая по формуле Яковлева из [3], формула 10,2;

q – вес одного погонного метра трубы.

Рассчитаем на смятие нижнюю трубу первой секции.

Основой расчёта является следующее уравнение:

,

где - коэффициенты запаса прочности на смятие, соответственно рассчитанной и допускаемой;

- расчётное сминающее давление в сечении z по длине обсадной колонны.

Из [3] получим, что в интервалах продуктивных пластов , в зависимости от устойчивости коллектора, примем . В остальных интервалах .

.

Определим длину первой секции: .

Определим вес первой секции: .

Рассчитаем на разрыв от внутреннего давления верхнюю трубу первой секции.

Определим по графику 4 внутреннее избыточное давление на глубине.

Основой расчёта является следующее уравнение:

где - коэффициенты запаса прочности, соответственно рассчитанный и допускаемый, [3],

внутреннее избыточное давление в сечении колонны z.

В интервале где на колонну действуют совместные (сжимающие и растягивающие) нагрузки должно выполнятся следующее условие:

Проверим нижнюю трубу второй секции на действие совместных нагрузок.

условие выполняется.


Выбираем трубы для второй секции: d=146мм, =7,7мм, []=24,3МПа, []=35МПа, []=1254кН, q=0,256кН, группы прочности Д.

Проверим нижнюю трубу второй секции на растяжение от веса первой секции.

В основе расчёта используется уравнение:

,

где [np ] и np допустимый и расчётный коэффициенты запаса прочности на растяжение, из [3] [np ]=1,3.

, условие выполняется.

Рассчитаем на смятие нижнюю трубу второй секции.

Для определения длины второй секции подбираем трубы для третьей секции: d=146мм, =7,0мм, []=20.3МПа, []=31,8МПа, []=1136кН, q=0,243кН, группы прочности Д.

Рассчитаем на смятие нижнюю трубу третьей секции.

Глубину спуска третьей секции определим из графика 4.

Определим длину второй секции:

Определим вес второй секции:

Расчёт на разрыв от внутреннего давления верхней трубы второй секции.

Определим по графику 4 внутреннее избыточное давление на глубине L=1600м.

Проверим нижнюю трубу третьей секции на действие совместных нагрузок.

Проверим нижнюю трубу третьей секции на растяжение от веса первой и второй секции.

условие выполняется.

Определим допустимую длину третьей секции:

Следовательно третья секция может быть применена до устья.

Проверим верхнюю трубу третьей секции на разрыв от внутреннего давления.

Определим по графику 4 внутреннее избыточное давление на глубине L=0 м.

Проверим верхнюю трубу третьей секции на растяжение от веса первой и второй секции:

Определим вес третьей секции:

условие выполняется.


Таблица 8

секции

Длина,

Li , м

Группа

прочности

Толщина стенки, мм Вес погонного метра, кН

Вес секции,

кН

Фактические

nсм

nв

np

1 215 Д 7,7 0,265 57 1,16 4,1 -
2 800 Д 7,7 0,265 212 1,2 3,5 1,3
3 1600 Д 7,0 0,243 388,8 1,24 2,31 1,73

8 Расчет цементирования

В процессе цементирования обсадных колонн с используется цементировочное оборудование Российского производства: цементировочные насосные агрегаты ЦА-320М, цементосмесительные машины 2СМН-20, цементовозы ЦВ-12, батареи манифольдные БМ-700,


29-04-2015, 00:33


Страницы: 1 2 3
Разделы сайта