ОБЩИЕ СВЕДЕНИЯ
Таблица 1 - Сведения о районе буровых работ
Наименование | Значение |
Площадь (месторождение) Административное расположение: - республика - область (край) - район Год ввода площади в бурение Год ввода площади в эксплуатацию Температура воздуха, о С - среднегодовая - наибольшая летняя - наименьшая зимняя Максимальная глубина промерзания грунта, м: Продолжительность отопительного периода в году, сутки Азимут преобладающего направления ветра, град. Наибольшая скорость ветра, м/с: Интервал залегания многолетнемерзлой породы, м Кровля подошва |
Западно-Моисеевское РФ Томская Каргасокский 2002 2003 -1,4 +35 -55 2,4 244 188 25 Нет |
Таблица 2 - Сведения о площадке строительства буровой
Рельеф местности (дна) | Состояние местности | Толщина, см | Растительный покров | Категория грунта | |
снежного покрова | почвенного слоя | ||||
Равнина слабовсхолмлен-ная | Смешанный лес | 100 | 10 | Осина, береза, ель | Вторая, частично заболочена, торф I типа (0,3-1,3 м) |
Таблица 3 - Источники и характеристики водо- и энергоснабжения, связи и местных стройматериалов
Название вида снабжения: (водоснабжение: - для бурения, для дизелей, - питьевая вода для бытовых нужд, энергоснабжение, связь, местные стройматериалы и т.п.) |
Источник заданного вида снабжения | Расстояние от источника до буровой, км |
Характеристика водо- и энергопривода, связи и местных стройматериалов |
1 | 2 | 3 | 4 |
Водоснабжение Энергоснабжение Связь |
Скважина для технического водоснабжения.* Внутрипромысловые электросети. Радиосвязь. |
0,10 на буровой |
Глубинный насос ЭЦНВ 6-72-75 с электроприводом. Водопровод диаметром 73 мм в две нитки на поверхности земли, теплоизолированный. ЛЭП – 6 кВ. Опоры металлические. Провод АС-50/8. Радиостанция, мощность 100 Вт. |
1 | 2 | 3 | 4 |
Местные стройматериалы: - лесоматериал - глина песок |
С вырубаемого отвода. Карьер (могильный) Карьер гидронамывной |
** ** ** |
Лес круглый Грунт II группы Грунт II группы |
Примечание:
* Групповой рабочий проект на строительство разведочно-эксплуатационных скважин для хозяйственно-питьевого и технического водоснабжения на кустовых (индивидуальных) площадках Крапивинского месторождения.
** согласно транспортной схемы.
ВВЕДЕНИЕ
Данный дипломный проект выполнен на основе материалов производственной и преддипломной практики в районе деятельности БП ЗАО «Сибирская Сервисная Компания».
В дипломном проекте рассматриваются следующие разделы:
1) Геолого-геофизическая часть: разрез скважины, условия проводки скважины, возможные осложнения.
2) Технология строительства скважины: рассматриваются вопросы связанные с проводкой скважины.
3) Техника для строительства скважины: выбор техники для строительства скважины.
4) Безопасность и экологичность проекта: вопросы охраны труда и окружающей среды.
5) Обоснование организации работ при строительстве скважины: составление ГТН, нормативной карты.
6) Экономическая часть: вопросы связанные с экономией строительства скважины.
7) Специальная часть: вопросы связанные с решением проблем вторичного вскрытия продуктивного пласта при использовании гидромеханических щелевых перфораторов.
Приводятся необходимые выводы и рекомендации.
1. ГЕОЛОГО-ГЕОФИЗИЧЕСКАЯ ЧАСТЬ
1.1 Литолого-стратиграфическая характеристика скважины
Таблица 1.1
Стратиграфическое подразделение | Глубина залегания, м | Мощ-ность,м | Элементы залегания (падения) пластов, угол, град. | Стандартное описание горной породы: полное название, характерные признаки (структура, текстура, минеральный состав и т.д.) | ||
Название | Индекс | От (кровля) | До (подошва) | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Четвертичные отложения | Q | 0 | 62 | 62 | 0 | Почвенно-растительный слой, пески и супеси желтые, разнозернистые, полимиктовые; глины, суглинки желтые. |
Некрасовская | Pg3 -Nnk | 62 | 212 | 150 | 0 | Глины оливково-зеленые, жирные, пластичные, тонкослоистые, кварцевые, кварц-полевошпатовые. |
Чеганская | Pg2 -Pg3 cg | 212 | 357 | 145 | 0 | Глины темно-серые, серые, с прослоями слабосцементированных алевролитов и песков полимиктовых. |
Люлинворская |
Pg2 ll | 357 | 507 | 150 | 0 | Глины светло-серые, до темных. Зеленовато-серые, мелко- и крупнозернистые |
Талицкая | Pg1 tl | 507 | 568 | 61 | 0 | Глины темно-серые, плотные, вязкие, иногда комковатые, алевролиты разнозернистые, в верхней части мергель серый с зеленоватым оттенком |
Ганькинская |
К2 gn | 568 | 712 | 144 | 0 | Глины темно-серые, серые, алевритистые, плотные с прослоями опок. |
Славгородская | К2 sl | 712 | 772 | 60 | 0 | Глины темно-зеленые, серые, опоковидные, плотные. Алевролиты песчанистые, темно-серые, плотные. Пески серые, мелкозернистые. |
Ипатовская | К2 ip | 772 | 852 | 80 | 0 | Чередование глин, песчаников и алевролитов. Глины, темно-серые, жирные на ощупь, плотные. Песчаники серые мелкозернистые; алевролиты серые, темно-серые песчанистые. |
Кузнецовская | К2 kz | 852 | 867 | 15 | 0 | Глины темно-серые, жирные на ощупь, с ходами плоедов. |
Алымская | К1 al | 1667 | 1762 | 95 | 0 | Неравномерное переслаивание аргил-литов, песчаников и алевролитов. Аргил-литы темно-серые, слоистые, плитчатые. Песчаники серые и светло-серые, разно-зернистые, полимиктовые, слабосцемен-тированные. Алевролиты серые, темно-серые плотные, слоистые, разнозерни-тые. |
1.2 Физико-механические свойства горных пород по разрезу скважины
Таблица 1.2
Индекс страт. подразделения | Интервал | Краткое название горной породы | Плотность, кг/м3 | Пористость, % | Глинистость, % | Твердость, кгс мм2 |
Проница-емость, мдарси | Коэффициент абразивности | Категория породы по промысловой классификации | |
от | до | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Q | 0 | 62 | Пески Глины |
1,9 2,2 |
35 10 |
10 90 |
– 10 |
2000 0 |
10 04 |
Мягкая Мягкая |
Pg3 -N nk | 62 | 212 | Глины Пески |
2,2 1,9 |
10 30 |
80 20 |
– 10 |
0 100 |
10 04 |
Мягкая Мягкая |
Pg2 -Pg3 cg | 212 | 357 | Глины Алевриты Пески |
2,2 2,0 2,0 |
10 15 15 |
100 50 25 |
10 10 – |
0 5 10 |
04 04 10 |
Мягкая Мягкая Мягкая |
Pg2 ll | 357 | 507 | Глины Алевролиты |
2,2 2,1 |
10 15 |
100 50 |
10 10 |
0 5 |
04 04 |
Мягкая Мягкая |
Pg1 tl | 507 | 568 | Глины Алевролиты |
2,2 2,1 |
10 15 |
100 50 |
10 10 |
0 10 |
04 04 |
Мягкая Мягкая |
K2 gn | 568 | 712 | Глины | 2,3 | 10 | 90 | 10 | 0 | 03 | Мягкая |
K2 sl | 712 | 772 | Глины Алевролиты Пески |
2,3 2,2 2,0 |
10 15 15 |
100 20 20 |
10 10 – |
0 5 5 |
04 04 10 |
Мягкая Мягкая Мягкая |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
K2 ip | 772 | 852 | Алевролиты Песчаники Глины |
2,2 2,2 2,3 |
15 15 10 |
20 20 100 |
10 10 10 |
5 10 0 |
10 10 04 |
Мягкая Мягкая Мягкая |
К2 kz | 852 | 867 | Глины | 2,3 | 10 | 95 | 15 | 0 | 04 | МС |
К1-2 pk | 867 | 1667 | Алевролиты Глины Песчаники Аргиллиты Песчаники |
2,2 2,3 2,0 2,4 2,2 |
25 10 30 5 25 |
20 90 10 95 20 |
20 10 17 15 20 |
50 0 500 0 100 |
10 04 10 04 10 |
Средняя Средняя Средняя Средняя Средняя |
К1 al | 1667 | 1762 | Аргиллиты Песчаники Алевролиты |
2,4 2,3 2,3 |
5 20 20 |
95 5 5 |
15 20 20 |
0 20 15 |
03 10 10 |
Средняя Средняя Средняя |
K1 kls | 1762 | 1867 | Аргиллиты Алевролиты Песчаники |
2,4 2,3 2,3 |
5 17 18 |
95 20 10 |
15 20 20 |
0 15 20 |
04 06 10 |
Средняя Средняя Средняя |
К1 tr | 1867 | 2352 | Песчаники Аргиллиты Алевролиты |
2,3 2,4 2,3 |
20 5 19 |
5 95 5 |
20 15 20 |
25 0 25 |
10 04 06 |
Средняя Средняя Средняя |
К1 klm | 2352 | 2672 | Аргиллиты Песчаники Алевролиты |
2,4 2,3 2,3 |
5 18 17 |
95 5 5 |
15 20 20 |
0 30 20 |
04 10 10 |
Твердая Твердая Твердая |
J3 bg | 2672 | 2690 | Аргиллиты | 2,4 | 5 | 95 | 50 | 0 | 06 | Твердая |
J3 vs | 2690 | 2750 | Аргиллиты Песчаники Алевролиты |
2,4 2,3 2,4 |
15 17 16 |
95 2 3 |
50 100 80 |
0 200 50 |
04 10 06 |
Твердая Твердая Твердая |
1.3. Нефтегазоводоносность, пластовые давления и температуры
Таблица 1.3 - Нефтеносность
Индекс пласта | Интервал, м | Тип коллектора | Плотность, г/см3 | Подвижность, мкм2 /мПа*с | Содержание серы, % | Содержание парафина, % | Свободный дебитм3 /сут | Параметры растворенного газа | |||||||
от | до | в пластовых условиях | после дегазации | Газовый фактор, м3 /м3 | Содержание углекислого газа, % | Содержание сероводорода, % | Относительная плотность газа по воздуху, кг/м3 | Коэффициент сжимаемости | Давление насыщения в пластовых условиях, МПа | ||||||
Ю1 1 Ю1 3 |
2690 2700 |
2695 2717 |
поров. поров. |
0,804 0,804 |
0,848 0,848 |
0,015 0,015 |
0,52 0,52 |
4,81 4,84 |
212* |
34 30 |
– – |
– – |
1,11 1,11 |
– – |
2,5 2,5 |
Примечание: *- максимальное значение дебита при испытании.
Таблица 1.4 - Водоносность
Индекс пласта | Индекс стратиграфического подразделения | Интервал, м | Тип коллектора | Плотность, г/см3 | Фазовая проницаемость, мдарси | Свободный дебит, м3 /сут | Химический состав воды в г/л | Степень минерализации, г/л | Тип воды по Сулину ГКН(М)- гидрокарбонатно-натриевый (магниевый) ХЛМ- хлормагниевый ХЛН- хлорнатриевый ХЛК- хлоркальциевый | Относится к источнику питьевого водоснабжения (да, нет) | ||||||
Анионы | Катионы | |||||||||||||||
от | до | Cl- | SO4 -- | HCO3 - | Na+ K+ | Mg++ | Ca++ | |||||||||
группа ПК группа А Ю1 3 |
Q, Pg1 - Pg3 K1-2 K1 K1 J3 |
20 86 7 17 62 2260 2720 |
568 17 20 2000 2670 2750 |
пор пор пор пор пор |
1,0 1,0 1 1,01 1,01 1,02 |
500 300 20 30 10 |
1,0 200,0 3,0 12,0 5,6 |
– 50 21 99 10 |
– – 1,0 – – |
– 0 28 1,0 1,2 |
– 48,0 15,0 86,0 11,6 |
– 1,0 18 5,0 0,2 |
0 1,0 17 9 0,8 |
0,79 15,0 18,0 17,0 33,4 |
ГКМ ХЛК ГКН ХЛН ХЛК |
Да Нет Нет Нет Нет |
Таблица 1.5 - Давление и температура по разрезу скважины (в графах 6, 9, 12, 15, 17 проставляются условные обозначения источника получения градиентов: ПСР- прогноз по сейсморазве-дочным данным, ПГФ- геофизическим исследованиям, РФЗ- расчет по фактическим замерам в скважинах)
Индекс страт. подразделения | Интервал, м | Градиент давления | ||||||||||||
от | до | пластового | порового | гидроразрыва пород | горного | |||||||||
кгс/см2 на м | источник получения | кгс/см2 на м | источник получения | кгс/см2 на м | источник получения | кгс/см2 на м | источник получения | |||||||
от | до | от | до | от | до | от | до | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Q Pg3 -Nnk Pg2 -Pg3 cg Pg2 ll Pg1 tl K2 gn K2 sl K2 ip K2 kz K1-2 pk |
0 62 212 357 507 568 712 772 852 867 |
62 212 357 507 568 712 772 852 867 1667 |
0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 |
0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 |
ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ |
0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 |
0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 |
ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ |
0,0 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,18 |
0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,18 |
ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ |
0,0 0,2 0,2 0,21 0,21 0,21 0,22 0,22 0,22 0,22 |
0,2 0,2 0,21 0,21 0,21 0,22 0,22 0,22 0,22 0,23 |
ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ ПГФ |
1.4 Условия бурения. Осложнения при бурении
Таблица 1.6 - Поглощения бурового раствора
Индекс страт. подраз-деления | Интервал, м | Макси-мальная интенсив-ность поглоще-ния, м3 /ч | Расстояние от устья скважины до статического уровня при его максимальном снижении, м | Имеется ли потеря циркуля-ции (да, нет) | Градиент давления поглощения, кгс/см2 на м | Условия возникновения | ||
от | до | при вскрытии | после изоляционных работ |
|||||
Q-Pg1 -Pg3 K1-2 |
0 650 |
530 2380 |
1 1 |
10 30 |
нет нет |
0,15 0,12 |
0,20 0,18-0,20 |
Увеличение плотности промывочной жидкости против проектной, репрессия на пласт >20% сверх гидростатического давления (частичное поглощение в песчаных породах) |
Таблица 1.7 - Осыпи и обвалы стенок скважины
Индекс страт. подразделения | Интервал,м | Буровые растворы, применявшиеся ранее | Время до начала осложнения, сут | Мероприятия по ликвидации последствий (проработка, промывка и т.д) | |||
от | до | тип раствора | Плотность, г/см3 | дополнительные данные по раствору, влияющие на устойчивость пород | |||
Q+Pg2 +Pg1 K1-2 K1 |
0 1300 1762 |
530 1660 2257 |
глинистый глинистый глинистый |
1,04 1,16 1,18 |
В>10 см3 за 30 мин В>10 см3 за 30 мин В>10 см3 за 30 мин |
3,0 2,5 2,0 |
Проработка, промывка, увеличение плотности и снижение водоотдачи промывочной жидкости |
Таблица 1.8 - Нефтегазоводопроявления
Индекс страт. подразделения | Интервал, м | Вид проявля-емого флюида | Длина столба газа при ликвидации газопроявле-ния, м | Плотность смеси при проявлении для расчета избыточных давлений, г/см3 | Условия возникновения | ||
от | до | ||||||
внутреннего | наружного | ||||||
К1 J3 J3 |
2260 2690 2720 |
2670 2717 2750 |
вода нефть вода |
– – – |
1,01 0,848 1,025 |
1,01 0,804 1,025 |
Снижение противо-давления на пласт ниже гидростатичес-кого. Несоблюдение проектных параметров бур. раствора |
Таблица 1.9 - Прихватоопасные зоны
Индекс страт. подразделения |
Интервал, м | Вид прихвата | Раствор, при применении которого произошел прихват | Наличие ограниче-ний на ос-тавление инструмен-та без дви-жения или промывки (да, нет) | ||||
от | до | тип | плот-ность, г/см3 | водоотдача, см3 30 мин |
смазы-вающие добавки (название) | |||
Q-Pg2-3 K1 K1 |
0 650 2000 |
530 2000 2380 |
от обвала неустойчивых пород и зак-линки инстру-мента от заклинки бур. инстру-мента и сальникообразования от перепада пластового давления |
глин. глин. глин. |
1,10 1,10 1,19 |
15,0 15,0 10,0 |
– – – |
да да да |
1.5 Обоснование комплекса геофизических исследований в скважине
Таблица 1.10 - Геофизические исследования
№ пп | Наименование исследований | Масштаб записи | Замеры и отборы производятся: | |||||||
На глубине, м | В интервале, м | |||||||||
от | до | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | |||||
Кондуктор (0-650 м) В открытом стволе |
||||||||||
1. 2. 3. |
Стандартный каротаж зондом А2.0 М0.5N, ПС* Кавернометрия* Инклинометрия |
1:500 1:500 через 10м |
650 650 650 |
0 0 0 |
650 650 650 |
|||||
В обсаженном стволе | ||||||||||
1. 2. |
Акустическая цементометрия (АКЦ с записью ФКД) Плотностная цементометрия (ЦМ-8-12) |
1:500 1:500 |
650 650 |
0 0 |
650 650 |
|||||
Эксплуатоционная колонна (650-2750 м) В открытом стволе |
||||||||||
1. 2. 3. 3. 4. 5. 6. 7. 8. 9. 10. |
Стандартный каротаж зондом А2.0 М0.5N, ПС* Стандартный каротаж зондами, А2.0 М0.5N, N6.0 М0.5N, ПС Кавернометрия* Кавернометрия* БКЗ зондами А0.4 М0.1N; А1.0 М0.1N; А4.0 М0.5N; А8.0 М0.5N; А0.5 М2.0А Индукционный каротаж (ИК)** Боковой каротаж (БК) Акустический каротаж (АКШ)* Микрозонды (МКЗ), микробоковой (МБК)* Гамма-гамма плотностной каротаж (ГГП)* Резистивиметрия* |
1:500 1:200 1:500 1:200 1:200 1:200 1:200 1:200 1:200 1:200 1:200 1:200 1:200 |
2750 2750 2750 2750 2750 2750 в интервале БКЗ 2750 2750 2750 |
650 2220 650 2600 2600 2220 в интерва-ле БКЗ 2600 2600 2600 |
2750 2750 2600 2750 2750 2750 в интер-вале БКЗ 2750 2750 2750 |
|||||
1 | 2 | 3 | 4 | 5 | 6 | |||||
11. 12. |
Радиоактивный каротаж (ГК, НКТ)* Инклинометрия |
1:200 через 10м |
2750 2750 2750 |
2600 2600 650 |
2750 2750 2750 |
|||||
В обсаженном стволе | ||||||||||
1. 2. 3. 4. 5. 6. 7. |
Радиоактивный каротаж(ГК,НКТ) +ЛМ Акустическая цементометрия (АКЦ с записью ФКД) Акустическая цементометрия (АКЦ с записью ФКД) Плотностная цементометрия (СГДТ-НВ) Плотностная цементометрия (СГДТ-НВ) МЛМ до перфорации МЛМ после перфорации Инклинометрия |
1:500 1:200 1:500 1:200 1:500 1:200 1:200 1:200 через 20м |
2750 2750 2750 2750 2750 2750 2750 2750 2750 |
0 2600 0 2600 0 2600 2600 2600 650 |
2750 2750 2750 2750 2750 2750 2750 2750 2750 |
Примечание: *) исследования проводятся в одной субвертикальной скважине куста; **) возможна запись ВИКИЗ.
2. ТЕХНОЛОГИЯ СТРОИТЕЛЬСТВА СКВАЖИНЫ
2.1 Проектирование профиля скважины
Исходные данные:
1. Глубина скважины по вертикале (Н), м 2750
2. Отход (А), м 1500
3. Длина вертикального участка (h1 ), м 200
4. Глубина спуска кондуктора (L), м 650
Способ бурения – турбинный
Выбираем 4-х интервальный профиль с участками – вертикальный, набора, стабилизации, спада зенитного угла.
Набор зенитного угла осуществляется при бурении под кондуктор.
Определим вспомогательный угол a' по формуле
(2.1)
Очевидно, что максимальный зенитный угол будет больше a',
aор = a'+50 = = 350 .
Выберем угол вхождения в пласт aк =200 .
Средний радиус искривления в интервале увеличения зенитного угла 0…350 составит R1 = 700 м.
Средний радиус кривизны на участке падения зенитного угла от 350 до 200 равен
Максимальный зенитный угол рассчитываем по формуле:
где A1 = A+R2 (1-cos aк )=1500+2225(1-cos200 )=1634 м
H1 = H+R2 sin aк = 2750+2225 sin200 = 3511 м
Подставляя полученные значения находим a = 340
Находим длины участков ствола скважины ℓi и их горизонтальные ai и вертикальные hi проекции.
1. Вертикальный участок
а1 = 0; h1 = 200 м; ℓ1 = h1 = 200 м
2. Участок набора зенитного угла
a2 = R1 (1-cos a) = 700(1-cos 340 ) = 120 м
h2 = R1 sin a = 700 sin 340 = 391,4 м
ℓ2 = R1 a/57,3 = 700×34/57,3 = 415,4 м
3. Участок стабилизации
a3 = h3 ×tg a = 1675,4×tg 340 = 1133 м
h3 = H1 – (h1 +h2 +h4 ) = 2750 - (200+391,4+483,2) = 1675,4 м
ℓ3 = h3 /cos a = 1675,4/cos 340 = 2020,9 м
4. Участок спада зенитного угла
a4 = R2 (cos aк - cos a) = 2225(сos 200 - cos 340 ) = 246,2 м
h4 = R2 (sin a - sin aк ) = 2225(sin 340 - sin 200 ) = 483,2 м
ℓ4 = R2 (a-aк )/57,3 = 2225×(34-20)/57,3 = 543,6 м
Таблица 2.1 - Результаты расчётов
Участок | аi , м | hi , м | ℓi , м |
1. Вертикальный | 0 | 200 | 200 |
2. Набор зенитного угла | 120 | 391,4 | 415,4 |
3. Стабилизации | 1133 | 1675,4 | 2020,9 |
4. Спада зенитного угла | 246,2 | 483,2 | 543,6 |
5. Сумма | 1499,5 | 2750 | 3180 |
2.2 Проектирование конструкции скважины
2.2.1 Обоснование числа обсадных колонн и глубины их спуска
Обоснование производим по графику совмещенных давлений.
Как видно из графика, по разрезу скважины несовместимых интервалов бурения нет. Поэтому, выбирая конструкцию скважины следует исходить из других условий. В данном случае с целью перекрытия обвалоопасных глин люлинворской и талицкой свит, на глубину 650 м спускается кондуктор с установкой башмака в плотные ганькинские свиты.
Эксплуатационаая колонна спускается до забоя (2750 м) с целью укрепления стенок скважины и размещения в ней технологического оборудования для эксплуатации скважины, разобщения пластов.
2.2.2 Выбор диаметров обсадных колонн и долот
Диаметр эксплуатационный колонны задается заказчиком, исходя из условий эксплуатации, проведения исследовательских, геофизических, ремонтных работ. Эксплуатационную колонну диаметром 168 мм выбираем в соответствии с требованиями заказчика.
Диаметр долота:
, ∆=5÷10 мм,
где Dм = 0,186 м – диаметр муфты обсадной колонны,
,
Кондуктор: Dк =Dд +2×δ, где δ – зазор между долотом и внутренней поверхностью кондуктора, принимается равным от 3 до 10 мм.
Dк =0,2159+2. 6. 103 =0,2279 м
Диаметр кондуктора принимаем равным 0,2445 м.
Определим диаметр долота при бурении кондуктора:
Dд.к =0,270+2. 8. 10-3 =0,286 м.
Диаметр долота при бурении под кондуктор 0,2953 м.
Результаты расчетов представлены в таблице 2.2.
Таблица 2.2 - Конструкция скважины
Наименование колонны | Глубина спуска, м | dд. , мм | dтруб , мм |
Кондуктор | 0-650 | 295,3 | 245 |
Эксплуатационная колонна | 0-2750 | 215,9 | 168 |
2.3 Выбор буровых растворов и их химическая обработка по интервалам
Тип бурового раствора и его параметры выбираем из условия обеспечения устойчивости стенок скважины и обеспечения необходимого противодавления на флюидонасыщенные пласты, которые определяются физико-химическими свойствами горных пород слагающих разрез скважины (таблица 1.2) и пластовыми давлениями (таблица 1.5). При выборе растворов следует руководствоваться опытом, накопленным при бурении в проектном горизонте. Выбор типов и параметров промывочной жидкости производим согласно регламенту по буровым растворам, принятого на данном предприятии, который представлен в таблице 2.3.
При бурении под кондуктор используется, наработанный на предыдущей скважине или приготовленный из глинопорошка, глинистый раствор. Бурение под эксплуатационную колонну ведется на полимерглинистом растворе, который получается из раствора оставшегося после бурения предыдущего интервала, путем его дообработки.
Таблица 2.3 - Поинтервальная химическая обработка буровых растворов
Интервал бурения, м | Наименование химреагентов и материалов | Плотность раствора, г/см3 | Плотность, г/см3 | Норма расхода, кг/м3 |
1 | 2 | 4 | 5 | 6 |
0-690 | Глинопорошок | 1,18 | 2,6 | 307,125 |
Сайпан | 1,40 | 0,36 | ||
Габройл HV | 1,85 | 0,13 | ||
ФК-2000 | 1,0 | 1,41 | ||
Вода | 1,0 | 870,975 | ||
690-2930 |
Глинопорошок | 1,10 | 2,6 | 187,688 |
Сайпан | 1,40 | 1,32 | ||
Габройл HV | 1,85 | 0,14 | ||
НТФ | 1,18 | 0,07 | ||
Кальциниров. сода | 2,5 | 0,16 | ||
ТПФН | 2,5 | 0,09 | ||
ФК-2000 | 1,0 | 3,640 | ||
Каустическая сода | 2,02 | 0,08 | ||
Na КМЦ 80/800 | 1,0 | 1,6 | ||
СНПХ ПКЦ-0515 | 0,87 | 200 л. на скважину | ||
Вода | 1,0 | 916,802 | ||
2930-3180 | Глинопрошок | 1,08 | 2,60 | 136,5 |
Сайпан | 1,40 | 1,32 | ||
Габройл HV | 1,85 | 0,14 | ||
НТФ | 1,18 | 0,07 | ||
Калициниров. сода | 2,5 | 0,16 | ||
ТПФН | 2,5 | 0,09 | ||
ФК-2000 | 1,00 | 3,640 | ||
Nа КМЦ 80/800 | 1,0 | 1,6 | ||
Каустическая сода | 2,,02 | 0,08 | ||
Вода | 1,0 | 938,0 |
2.3.1 Обоснование параметров бурового раствора. Бурение под кондуктор
- пластовое давление:
=
- превышение гидростатического давления над пластовым (репрессия) 10-15%, принимается равным 15%:
- плотность бурового раствора:
С учетом горно-геологических условий и практики бурения эксплуатоционных скважин на близлежащем Крапивинском месторождении и разведочных скважин на Двуреченском месторождении плотность бурового раствора принята .
Бурение под эксплуатоционную колонну:
Бурение под эксплуатоционную колонну до глубины изменения параметров раствора для вскрытия продуктивного пласта превышение гидростатического давления над пластовым (репрессия) должно составлять 10-15% в интервале 650-1200 м и 5-10% в интервале 1200-2500 м., в интервале от 2500 м и до проектной глубины 4-7%:
в интервале 650-1200 м
- максимальное пластовое давление:
- превышение гидростатического давления над пластовым (репрессия) принимается 11%:
- плотность бурового раствора:
в интервале 1200-2500 м
- пластовое давление при вскрытии продуктивного пласта:
- превышение гидростатического давления над пластовым (репрессия) с учетом технологических особенностей наработки бурового раствора и обеспечения устойчивости ствола скважины репрессия принимается равной 10%:
- плотность бурового раствора:
.
в интервале 2500-2650 м
- максимальное пластовое давление:
- превышение гидростатического давления над пластовым (репрессия) из расчета 7%:
- плотность бурового раствора:
.
Бурение под эксплуатоционную колонну до вскрытия продуктивного пласта в интервале 2500-2650 м возможно с превышением гидростатического давления над пластовым не более чем на 35 кгс/см2 .
- плотность бурового раствора из расчета репрессии 35 кгс/см2 :
.
Плотность бурового раствора для бурения интервала 2500-2650 м принимается 1,10 г/см3 .
Бурение под эксплуатоционную колонну при вскрытии продуктивного пласта до глубины 2750 м должно осуществляться с превышением гидростатического давления над пластовым (репрессия) 4-7%. С учетом обеспечения устойчивости ствола скважины в вышележащих интервалах и предотвращения нефтеводопроявлений превышение гидростатического давления над пластовым принимается 7%:
- пластовое давление при вскрытии продуктивного пласта:
- превышение гидростатического давления над пластовым (репрессия) из расчета 7%:
- плотность бурового раствора:
.
Далее представлены основные принципы выбора других параметров буровых растворов.
Выбирая вязкость, нужно учитывать, что она в большинстве случаев оказывает отрицательное влияние на процесс бурения, поэтому нужно стремиться к ее минимальному значению (в данном случае УВ = 25…30 сек.), минимизация вязкости позволяет увеличить механическую скорость бурения, поддерживать на высоком уровне скорость восходящего потока в затрубном пространстве, то есть обеспечивать качественную очистку ствола скважины, струя маловязкого раствора теряет гораздо меньше энергии на пути от насадки долота до забоя, чем струя высоковязкого, что делает возможной более качественную очистку забоя скважины. Показатель фильтрации, при бурении в продуктивных горизонтах принимается не более 5…6 см3 за 30 мин по прибору ВМ-6 (в нашем случае 5…6 см3 за 30 мин), во избежание загрязнения пласта фильтратом раствора, что в дальнейшем затрудняет их освоение и эксплуатацию, вследствие почти необратимого ухудшения коллекторских свойств. В непродуктивных пластах допускается несколько большие значения показателя фильтрации.
Способность бурового раствора выносить выбуренную породу на дневную поверхность и удерживать ее, после прекращения циркуляции, определяется статическим напряжением сдвига (СНС). Значение СНС для выполнения этой задачи должны быть не менее 15 – 20 дПа.
Содержание абразивной фазы («песка») в буровом растворе, с целью уменьшения изнашивания инструмента и бурового оборудования, допускается не более 1%. Результаты расчетов сведем в таблицу 2.4.
Таблица 2.4 - Параметры бурового раствора
Интервал бурения, м | Плотность, кг/м3 | Условная вязкость, с | Фильтрация по ВМ-6, см3 /30 мин | Толщина корки, мм | СНС, Па | pH | Содержание песка, % | ||
от | до | 1 мин | 30 мин | ||||||
0 | 650 | 1180 | 30…35 | 6…8 | 1,5 | 20 | 30 | 7-8 | 1…2 |
650 | 2500 | 1100 | 25…30 | 5…6 | 1 | 15 | 25 | 7-8 | 1…2 |
2500 | 2650 | 1100 | 25…30 | 4…5 | 0,5 | 15 | 25 | 7 | 1 |
2650 | 2750 | 1080 | 25…30 | 4…5 | 0,5 | 15 | 25 | 7 | 0,5 |
2.3.2 Определение потребного количества бурового раствора
Объем запаса бурового раствора на поверхности дополнительно к объему раствора, находящегося в циркуляции, должен быть не менее двух объемов скважины.
Максимальный объем скважины прибурении под эксплуатоционную колонну составляет:
Vскв = 0,785(Дк 2 . Lк + dД 2 (L2 - Lк) . Кк1 + dД 2 ( Lc -L2) . Кк2) = 0,785(0,22672 . 690 + 0,21592 . (2557 – 690) . 1,7 + 0,21592 (3180 – 2557) . 1,1)=208 м3
где:
Дк - внутренний диаметр кондуктора, м;
Lк - глубина спуска кондуктора по стволу, м;
L2 - начало интервала глубины скважины с коэффициентом кавернозности Кк2 ;
Lc - глубина скважины по стволу, м;
dД - диаметр долота при бурении скважины под эксплуатоционную колонну, м;
Кк1 , Кк2 - коэффициенты кавернозности.
Необходимый объем запаса бурового раствора на поверхности должен составлять 2Vскв = 416 м3 .
Для хранения запаса бурового раствора в теле куста предусматривается строительство амбара объемом 500 м3 .
2.4 Выбор способа бурения
Основные требования к выбору способа вращения долота определяются необходимостью обеспечения успешной работы, проводки ствола скважины с высокими технико-экономическими показателями.
Выбор способа бурения зависит от технической оснащенности предприятия (парк буровых установок, буровых труб, забойных двигателей и т.п.), опыта бурения в данном районе.
Для бурения данной скважины выбираем бурение с помощью гидравлических забойных двигателей. Турбинный способ обладает рядом преимуществ по сравнению с роторным способом бурения:
· механическая скорость выше, чем при роторном способе бурения;
· облегчает отклонение ствола в требуемом направлении;
· можно использовать все виды промывочной жидкости за
29-04-2015, 00:57