Современные концепции дистанционного зондирования

Министерство образования и науки РФ

Государственное образовательное учреждение

высшего профессионального образования

«Тульский государственный университет»

Кафедра геоинженерии и кадастра

Контрольно курсовая работа по дисциплине:

«Аэрокосмические съемки»

На тему:

«Современные концепции дистанционного зондирования»

Выполнил: ст. гр. 331861 Мурашов С.Г.

Проверил: проф. Басова И.А.


Содержание.

1.Введение.3

2.Основное положение.3

2.1NDVI (Normalized Difference Vegetation Index).3

2.2Гиперспектральная система MODIS.3

2.2.1Исследования суши. 3

3.Мониторинг сельскохозяйственного назначения.3

3.1Правовая основа.3

3.2Структура системы дистанционного мониторинга земель с/х назначения.3

3.3Технические требования. 3

3.4Пример комплексного подхода к мониторингу сельскохозяйственных территорий3

4.Заключение.3

5.Библиографический список.3

1. Введение.

Исторически сложилось, что роль сельского хозяйства для России довольно велика, и в последние годы после некоторого спада наблюдается повышение интереса к этому сегменту российской экономики. В большинстве своем это связано со сменой земельной политики России: у земли появляется собственник, который заинтересован в оптимальном ее использовании. Обширные территории, занимаемые сельскохозяйственными угодьями, довольно сложно контролировать из-за недостатка точных карт, неразвитой сети пунктов оперативного мониторинга, наземных станций, в том числе и метеорологических, отсутствия авиационной поддержки, ввиду дороговизны содержания штата и т.д. Кроме того, в силу различного рода природных процессов, происходит постоянное изменение границ посевных площадей, характеристик почв и условий вегетации на различных полях и от участка к участку. Все эти факторы препятствуют получению объективной, оперативной информации, необходимой для констатации текущей ситуации, ее оценки и прогнозирования. А без этого практически невозможны увеличение производства сельскохозяйственной продукции, оптимизация использования земель, прогнозирование урожайности, уменьшение затрат и повышение рентабельности. За рубежом аналогичные проблемы успешно решаются благодаря применению данных аэро- и космической съемки, а также широкому использованию средств спутниковой навигации (GPS) при мониторинге посевов и при сборе урожая, для изучения состояния растительного покрова и прогноза продуктивности выращиваемых культур. В нашей стране использование данных спутникового зондирования в сельском хозяйстве представляет собой быстро развивающееся и перспективное направление. Материалы космической съемки могут помочь как для решения комплексных задач управления сельскохозяйственными территориями, так и в узкоспециализированных направлениях. Типичными задачами в этой области являются: инвентаризация сельскохозяйственных угодий, контроль состояния посевов, выделение участков эрозии, заболачивания, засоленности и опустынивания, определение состава почв, слежение за качеством и своевременностью проведения различных сельскохозяйственных мероприятий. При систематической повторяемости съемок — наблюдение за динамикой развития сельскохозяйственных культур и прогнозирование урожайности. Например, зная, как меняется спектральная яркость растительности в течение вегетационного периода, можно по тону изображения полей судить об их агротехническом состоянии. После перезимовки состояние озимых культур оценивается по различию в цвете здоровых и погибших растений, состояние озимых и яровых до уборки урожая — на основе учета степени покрытости почвы всходами и равномерности их распределения.


2. Основное положение.

Как известно, отражение растительного покрова в красной и ближней инфракрасной областях электромагнитного спектра тесно связано с его зеленой фитомассой. Для того чтобы количественно оценить состояние растительности, широко применяется так называемый нормализованный разностный вегетационный индекс NDVI (Normalized Difference Vegetation Index).

2.1 NDVI (Normalized Difference Vegetation Index).

NDVI (NormalizedDifferenceVegetationIndex) - нормализованный относительный индекс растительности - простой количественный показатель количества фотосинтетически активной биомассы (обычно называемый вегетационным индексом). Один из самых распространенных и используемых индексов для решения задач, использующих количественные оценки растительного покрова.

Вычисляется по следующей формуле:

где,

NIR - отражение в ближней инфракрасной области спектра

RED - отражение в красной области спектра

Согласно этой формуле, плотность растительности (NDVI) в определенной точке изображения равна разнице интенсивностей отраженного света в красном и инфракрасном диапазоне, деленной на сумму их интенсивностей.

Расчет NDVI базируется на двух наиболее стабильных (не зависящих от прочих факторов) участках спектральной кривой отражения сосудистых растений. В красной области спектра (0,6-0,7 мкм) лежит максимум поглощения солнечной радиации хлорофиллом высших сосудистых растений, а в инфракрасной области (0,7-1,0 мкм) находиться область максимального отражения клеточных структур листа. То есть высокая фотосинтетическая активность (связанная, как правило, с густой растительностью) ведет к меньшему отражению в красной области спектра и большему в инфракрасной. Отношение этих показателей друг к другу позволяет четко отделять и анализировать растительные от прочих природных объектов. Использование же не простого отношения, а нормализованной разности между минимумом и максимумом отражений увеличивает точность измерения, позволяет уменьшить влияние таких явлений как различия в освещенности снимка, облачности, дымки, поглощение радиации атмосферой и пр.

NDVI может быть рассчитан на основе любых снимков высокого, среднего или низкого разрешения, имеющим спектральные каналы в красном (0,55-0,75 мкм) и инфракрасном диапазоне (0,75-1,0 мкм). Алгоритм расчета NDVI встроен практически во все распространенные пакеты программного обеспечения, связанные с обработкой данных дистанционного зондирования (Arc View Image Analysis, ERDAS Imagine, ENVI, Ermapper, Scanex MODIS Processor, ScanView и др.).

Комбинации каналов камер спутников используемые для расчета NDVI:

MSS Landsat(4,5) 5 (0.6-0.7 мкм), 6 (0.7-0.8 мкм) или 7 (0.8-1.1 мкм)
TM Landsat(4,5) 3 (0.63-0.69 мкм), 4 (0.76-0.90 мкм)
ETM+ Landsat7 3 (0.63-0.69 мкм), 4 (0.75-0.90 мкм)
AVHRR NOAA 1 (0.58-0.68 мкм), 2 (0.72-1.0 мкм)
MODIS Terra(Aqua) 1 (0.62-0.67 мкм), 2 (0.841-0.876 мкм)
ASTER Terra 2 (0.63-0.69 мкм), 3 (0.76-0.86 мкм)
LISS IRS(1C/1D) 2 (0.62-0.68 мкм), 3 (0.77-0.86 мкм)

Со времени разработки алгоритма для расчета NDVI (RouseBJ, 1973) у него появилось довольно много модификаций предназначенных для уменьшения влияния различных помехообразующих факторов. Таких, к примеру, как поглощение аэрозолями атмосферы (atmospheric - resistantvegetationindex - ARVI), отражение от почвенного слоя (soiladjustedvegetationindex - SAVI) и др. Для расчета этих индексов используются формулы, учитывающие отношения между отражающей способностью различных природных объектов и растительностью в других диапазонах, помимо красного и инфракрасного, что делает их более сложными в применении. Существуют также индексы, основанные на NDVI, но корректирующие сразу несколько помехообразующих факторов, как, например EVI (Enhancedvegetationindex).

Для отображения индекса NDVI используется стандартизованная непрерывная градиентная или дискретная шкала, показывающая значения в диапазоне от -1..1 в % или в так называемой масштабированной шкале в диапазоне от 0 до 255 (используется для отображения в некоторых пакетах обработки ДЗЗ, соответствует количеству градаций серого), или в диапазоне 0..200 (-100..100), что более удобно, так как каждая единица соответствует 1% изменения показателя. Благодаря особенности отражения в NIR -RED областях спектра, природные объекты, не связанные с растительностью, имеют фиксированное значение NDVI, (что позволяет использовать этот параметр для их идентификации):

Тип объекта Отражение в красной области спектра Отражение в инфракрасной области спектра Значение NDVI
Густая растительность 0.1 0.5 0.7
Разряженная растительность 0.1 0.3 0.5
Открытая почва 0.25 0.3 0.025
Облака 0.25 0.25 0
Снег и лед 0.375 0.35 -0.05
Вода 0.02 0.01 -0.25
Искусственные материалы (бетон, асфальт) 0.3 0.1 -0.5

Но, как правило, для задач связанных с картографированием растительности используют немасштабированную шкалу, начинающуюся с 0 (значения NDVI меньше 0 растительность принимать не может). Для перевода из шкалы -1..1 в 0..200 (масштабирование) используется следующая формула:

масштабированный NDVI = 100(NDVI + 1)

Существует устойчивая корреляция между показателем NDVI и продуктивностью для различных типов экосистем:

Это свойство довольно активно используется для регионального картирования и анализа различных типов ландшафтов, оценке ресурсов и площадей биосистем в масштабе стран и континентов. Однако чаще, расчет NDVI употребляется на основе серии разновременных (разносезонных) снимков с заданным временным разрешением, позволяя получать динамическую картину процессов изменения границ и характеристик различных типов растительности (месячные вариации, сезонные вариации, годовые вариации).

Будучи искусственным безразмерным показателем NDVI предназначен для измерения эколого-климатических характеристик растительности, но в тоже время может показывать значительную корреляцию с некоторыми параметрами, совсем другой области:

· Продуктивностью (временные изменения)

· Биомассой

· Влажностью и минеральной (органической) насыщенностью почвы

· Испаряемостью (эвапотранспирацией)

· Объемом выпадаемых осадков

· Мощностью и характеристиками снежного покрова

Зависимость между этими параметрами и NDVI, как правило, не прямая и связана с особенностями исследуемой территории, ее климатическими и экологическими характеристиками, кроме этого, часто приходиться учитывать временную разнесенность параметра и ответной реакции NDVI.

Благодаря всем этим особенностям, карты NDVI часто используются как один из промежуточных дополнительных слоев для проведения более сложных типов анализа. Результатами которых могут являться карты продуктивности лесов и сельхозземель, карты типов ландшафтов, растительности и природных зон, почвенные, аридные, фито-гидрологические и другие эколого-климатические карты. Так же, на его основе возможно получение численных данных для использования в расчетах оценки и прогнозирования урожайности и продуктивности, биологического разнообразия, степени нарушенности и ущерба от различных естественных и антропогенных бедствий, аварий и т.д. Часто эти данные используются для вычисления других, универсальных и территориально-привязанных индексов: LAI - индекс листовой поверхности , FPAR - индекс фотосинтетической активной радиации, поглощаемый растительностью и пр.

В целом, главным преимуществом NDVI является легкость его получения: для вычисления индекса не требуется никаких дополнительных данных и методик, кроме непосредственно самой космической съемки и знания ее параметров.

Так, благодаря минимальному временному разрешению данных MODIS/Terra, вычисление NDVI на их основе может давать оперативную информацию об эколого-климатической обстановке и возможность отслеживать динамику различных параметров с периодичностью до 1 недели! А большой пространственный охват позволяет проводить мониторинг территорий, соразмерный с площадями областей и целых стран. Данные же камер высокого разрешения, типа Landsat, IRS, Aster позволяют следить за состоянием объектов размерами вплоть до отдельного поля или лесного выдела.

Следует, однако, учитывать и главные недостатки использования NDVI-индекса:

· Невозможность использования данных, не прошедших этап радиометрической коррекции (калибровки);

· Погрешности, вносимые погодными условиями, сильной облачностью и дымкой - их влияние можно частично скорректировать использованием улучшенных коэффициентов и композитных изображений с сериями NDVI за несколько дней, недель или месяцев (MVC - Maximum Value Composite). Усредненные значения позволяют избежать влияния случайных и некоторых систематических погрешностей. Как показывает практика, это очень часто применяемый подход для подготовки данных для создания карт NDVI, примеры показанные в дальнейшем, к сожалению, сделаны на основе разовой съемки, ошибки которой не скорректированы с помощью MVC. Расчет MVC довольно прост и может быть выполнен в ArcInfo GRID с помощью следующих операций (в примере 5 слоев NDVI сделанных из снимков разных дат):

· up = upos(ndvi1, ndvi2, ndvi3, ndvi4, ndvi5)

· result = con(up == 1, ch1, up==2, ch1, up==3, ch1, up==4,ch1, up==5, ch1)

· Необходимостью для большинства задач сравнения полученных результатов с предварительно собранными данными тестовых участков (эталонов), в которых должны учитываться сезонные эколого-климатические показатели, как самого снимка, так и тестовых площадок на момент сбора данных. Особенно значимыми данные материалы становятся при расчетах продуктивности, запасах биомассы и прочих количественных показателях;

· Возможностью использования съемки только времени сезона вегетации для исследуемого региона. В силу своей привязанности к количеству фотосинтезирующей биомассы, NDVI не эффективен на снимках полученных в сезон ослабленной или невегетирующей в этот период растительности.

2.2 Гиперспектральная система MODIS.

Предназначение системы MODIS (Moderate-resolution Imaging Spectroradiometer - сканирующий спектрорадиометр среднего разрешения) состоит в сборе данных для калиброванных глобальных интерактивных моделей Земли как единой системы. В будущем эти модели должны прогнозировать глобальные изменения с точностью, достаточной для принятия разумных решений по защите окружающей среды [1]. Данные MODIS по всей поверхности Земли поступают со спутника Terra каждые 2 дня в 36 спектральных зонах ( в диапазоне 0.405-14.385 мкм) с разрешение 250-1000 м, что обеспечивает моделирование в глобальном и региональном масштабе. Система MODIS будет также размещена на спутнике Aqua, что удвоит количество поступающих данных. Материалы съемки MODIS имеют широкий спектр применения для исследования атмосферы, океана и суши.

2.2.1 Исследования суши

MODIS позволяет исследовать широкий спектр явлений на поверхности Земли. Измерения в видимом диапазоне имеют большое значение для многих объектов суши, в частности, гляциологических в целях фиксации границ покровных и горных ледников, распространения и сезонной динамики снежного покрова, оценки количества снега и льда. Мониторинг динамики ледников - сокращения или увеличения площади оледенения - и морских льдов важен для изучения последствий глобального изменения климата. Данные о таянии снега и льда нужны для прогнозов паводковых явлений. Кроме того, площади, занятые снегом и льдом, определяют глобальное альбедо Земли - необходимый компонент при расчетах радиационного баланса. Сводка данных о готовых производных изображениях снежного покрова суши, а также морских льдов.

Система MODIS во многом ориентирована также на исследование растительности. Съемка районов сведения лесов позволяет определять темпы обезлесения. Состояние растительности, ее реакция на внешнее воздействие изучаются с использованием вегетационных индексов. Изготовление по данным MODIS производных изображений путем обработки по специальным алгоритмам информации в избранных зонах позволяет изучать первичную продуктивность, биомассу суши и интенсивность фотосинтеза.

Исследования растительности при помощи так называемых карт вегетационного индекса NDVI (Normalised Difference Vegetation Index – нормализованная разность яркостей в красной и ближней инфракрасной зонах) стали традиционными. Прежде NDVI рассчитывался обычно по данным радиометра AVHRR спутников NOAA. Однако эти спутники завершают работу, и на последующие годы MODIS как бы принимает на себя получение данных для расчета NDVI [2]. Расчет индекса проводится по спектральным зонам, прошедшим атмосферную коррекцию (алгоритм ее расчета использует различные каналы и производные изображения MODIS). Специально для MODIS на основе NDVI разработан индекс нового поколения EVI (Enhanced Vegetation Index - улучшенный вегетационный индекс):

EVI = (r*nir - r*red) x (1+L) / (r*nir + C1 x r* red - C2 x r*blue + L)

где r*nir, r*red, r*blue - скорректированные за атмосферу (по данным съемки MODIS) значения отражательной способности в ближней инфракрасной, красной и голубой зоне (0.841-0.876, 0.620- 0.670 0.459 - 0.479 мкм); L - поправочный коэффициент, учитывающий влияние почвы; С1, С2 - коэффициенты, контролирующие вклад голубой зоны в коррекцию красной за рассеяние атмосферными аэрозолями. Новый индекс позволяет выделить больше градаций в районах с высокой зеленой биомассой и имеет преимущества для мониторинга растительности, поскольку влияние почвы и атмосферы в значениях EVI минимизировано.

На рисунке справа приведены изображения EVI для территории США в марте-апреле и мае-июне 2001 г. Хорошо видно сезонное развитие растительности.

Для изучения растительного покрова поверхности Земли по данным дистанционного зондирования были разработаны новые алгоритмы автоматизированного расчета показателей глобального листового индекса (LAI - Leaf Area Index) и поглощенной растительностью при фотосинтезе радиации (FPAR - Fraction of Photosynthetically Active Radiation). LAI - площадь листовой поверхности (с одной стороны листа) на единицу площади - характеризует структуру растительного покрова. FPAR указывает на долю радиации в "фотосинтетически активном" диапазоне волн (0.400 - 0.700 мкм), поглощаемую растительным покровом. LAI и FPAR - это биофизические параметры, описыващие структуру растительного покрова и скорость проходящего в нем энергомассобмена. Их используют для расчета величины фотосинтеза, эвапотранспирации, и первичной продуктивности экосистем. Эти параметры также необходимы для исследования круговорота энергии, углерода, воды, и изучения биогеохимических характеристик растительности.

В отличие от традиционно применяемого вегетационного индекса

NDVI, для расчета LAI/FPAR используется большее количество спектральных зон съемки (прошедших атмосферную коррекцию), учитывается карта типов покрова поверхности Земли и дополнительная наземная информация.

На рисунке справа показаны карты LAI и FPAR для Африки, осредненные за декабрь 2000 г. - зимний (сухой) период для части Африки в северном полушарии, и летний - для части в южном полушарии.

3. Мониторинг сельскохозяйственного назначения.

Для эффективного развития аграрного производства требуется высокоэффективная система земледелия. В свою очередь, создание такой системы в настоящее время вряд ли возможно без внедрения высокоэффективных технологий сбора и обработки информации по сельскохозяйственным показателям. Как свидетельствует мировой опыт, ИТ технологии могут оказать существенную помощь при решении многочисленных задач, связанных с планированием, прогнозом, анализом и моделированием сельскохозяйственных процессов.

Для решения этих и подобных им задач требуются современные методы и средства получения, хранения, обработки и представления разнообразной информации, а также средства обмена информацией. К ним относятся методы сбора значительного объема данных по множеству показателей с весьма значительных по площади территорий. Затем необходимо представить собранные данные в цифровом виде, пригодном для использования в информационных, в том числе геоинформационных системах. Эти системы должны объединять пространственные географические данные, аэро- и космические изображения а также тематические данные по множеству сельскохозяйственных параметров, представленных в картографической и табличной формах. Такие системы можно использовать для выведения значительных массивов информации на экран или на твердую копию в удобных для пользователя видах. Накладывая на собранную информацию другие полученные и собранные данные, такие, например, как качество почвы, условия орошения, метеорологическая информация, фитосанитарные наблюдения, данные полевых агроисследований, данные спутникового мониторинга и т.д., можно получать вторичный производный картографический материал аналитического свойства. На его основании можно судить о степени развития растительных культур на данной площади и в определенное время. Это, возможно, самый оптимальный способ мониторинга состояния растительного покрова, зерновых культур и пастбищ, а также их продуктивности, выявления деградации растительных культур или почвы, прогнозирования урожая и т.д.

3.1 Правовая основа.

Положение о Министерстве сельского хозяйства РФ (ППРФ от 24 марта 2006 г. № 164) устанавливает полномочия Министерства в области обеспечения устойчивого развития сельских территорий, проведения фитосанитарного и ветеринарного мониторинга, поддержания плодородия почв, рационального использования средств федерального бюджета для финансовой поддержки агропромышленного комплекса РФ.

Реализация этих положений требует соответствующей информационной поддержки, учитывающей географические, климатические, экологические, экономические и другие факторы. Пространственное распределение таких параметров, их взаимодействие моделируются посредством специализированных программных средств – географических информационных систем


29-04-2015, 01:03


Страницы: 1 2
Разделы сайта