Аэрокосмические методы в геологии

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ГЕОЛОГО-ГЕОФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ОБЩЕЙ И РЕГИОНАЛЬНОЙ ГЕОЛОГИИ

Семёнова Софья Андреевна

Курс I, группа (853)

Курсовая реферативная работа

АЭРОКОСМИЧЕСКИЕ МЕТОДЫ В ГЕОЛОГИИ

Руководитель

(cт. преподаватель Соловецкая Людмила Владимировна)

Рецензент

(Черкасов Александр Александрович, 8503)

Новосибирск

2009

АННОТАЦИЯ

Информация, полученная с помощью космических методов исследования, дала геологам очень богатый материал. Данные методы помогают решать в глобальном масштабе важнейшие проблемы теоретической геологии и подтверждать основные закономерности размещения полезных ископаемых. Сегодня аэрокосмические исследования природных ресурсов Земли и окружающей среды приобрели большое значение в решении многих геологических задач. Постепенно исследования привели к формированию дисциплины – аэрокосмического зондирования.

Эти вопросы применения аэрокосмических методов в геологии рассмотрены в данной, предназначенной для широкого круга читателей курсовой реферативной работе.

Работа разделена на 6 глав, некоторые из которых на разделы. Она содержит 11 рисунков и 3 таблицы, и составляет 31 страницу.

ANNOTATION

The information received by means of space methods of research, has given to geologists very rich material. The given methods help to solve on a global scale the major problems of theoretical geology and to confirm the basic laws of placing of minerals. Today space researches of natural resources of the Earth and environment have got great value in the decision of many geological problems. Gradually researches have led to discipline formation - space sounding.

These questions of application of space methods in geology are considered in the given, course abstract work intended for a wide range of readers. Work is divided into 6 heads, some of which on sections. It contains 11 drawings and 3 tables, and makes 31 pages.

СОДЕРЖАНИЕ

Аннотация 2

Введение 4

Глава 1. Исторический очерк 5

1.1. С чего начиналось применение аэрофотосъёмки в геологии 5

1.2. ДЗЗ 6

1.3. ГИС 8

Глава 2. Объекты изучения, цели и задачи аэрокосмических методов 9

Глава 3. Физические основы дистанционных исследований 10

Глава 4. Современные средства исследований 16

4.1. Российская космическая система ДЗЗ 16

4.2. Цифровые системы съёмки 20

Глава 5. Связи с другими научными дисциплинами 24

Глава6. Исследования, проводимые в институтах геологического профиля Новосибирского Центра СО РАН и лекционные курсы ГГФ НГУ. 25

Заключение 28

Словарь основных терминов 29

Список использованной литературы 30

ВВЕДЕНИЕ

Я решила выбрать данную тему работы, в связи с тем, что аэрокосмические методы исследования с момента их появления в геологии всегда были и будут актуальны, особенно для России с её просторами, огромными расстояниями, неразвитой инфраструктурой.

Необходимо также отметить, что площади известных горнорудных районов в геологическом отношении довольно хорошо изучены и обследованы. Поэтому здесь можно рассчитывать, главным образом, на выявление скрытых рудных объектов (глубоко залегающих и/или перекрытых рыхлыми отложениями). Это требует перехода на новые технологии прогноза и поиска месторождений, которые позволяют на начальном этапе в короткие сроки при минимальных затратах средств значительно сократить размер перспективных площадей для постановки детальных глубинных поисковых работ. И здесь на первый план также выходят дистанционные методы геологических исследований.

Особо важным обстоятельством является то, что космические съемки (КС) являются высоко экологичными. При их выполнении не нарушается целостность и не происходит загрязнения исследуемых территорий.

Очевидным преимуществом данных КС является: - объективность и метричность исходной информации; - обзорность, непрерывность, наглядность и требуемая детальность; - использование цифровых средств получения информации и обработка данных в среде геоинформационных систем; - естественная генерализация и повышенная глубинность; - высокая информативность, обусловленная возможностью получения данных в широком диапазоне спектра электромагнитного излучения. А относительно низкая стоимость, позволяет сократить сроки и повысить результативность геологоразведочных работ.

Приступая к работе, я наметила для себя следующие задачи: ознакомиться с исторической стороной вопроса, изучить и рассмотреть методы дистанционного исследования Земли, узнать с помощью каких приборов и каким образом происходят эти исследования. Понять как и для каких геологических задач применяют аэрокосмические методы исследования в геологии. Обобщить найденную информацию и усвоить полученные знания, и применить их в последующем изучении дисциплин, читающихся на кафедре общей и региональной геологии.

1. ИСТОРИЧЕСКИЙ ОЧЕРК

1.1 С чего начиналось применение аэрофотосъёмки в геологии

Во Франции в 1855 году с воздушного шара были сделаны первые фотографии с воздуха, для составления плана Парижа. Потом в 1860-х годах французский геолог Эме Цивиаль фотографировал Альпы с высоких вершин, и на фотографиях выделял геологические границы, т.е. он впервые применил фотографирование земной поверхности с геологическими целями.

С этого момента использование фотографий с геологическими целями начало набирать обороты. Особенно ускорился прогресс развития аэросъёмки с появлением авиации. Под аэрофотосъёмкой или воздушным фотографированием понимают фотографирование земной поверхности с воздухоплавательных и летательных аппаратов.

В начале аэрофотосъёмку использовали для составления карт, планов, для помощи в строительстве мостов, плотин, дамб, авто и железнодорожных дорог, в помощь людям для исследования новых территорий.

Инициатором внедрения аэрометодов в геологические и географические исследования в Советском Союзе следует считать академика Ферсмана А.Е., который ещё в 1927 году, выступая в печати, придавал огромное значение роли самолёта при географических исследованиях. С 1931 года создаются различные научные и производственные организации, специализирующиеся на изучении и применении результатов аэрофотосъемок в проведении различных геологических работ. Разрабатываются методические пособия и рекомендации, издаются монографии, учебники и справочники в которых обобщен опыт использования аэросъемочных работ для решения задач прикладной геологии.

В 1950-е годы наряду с общим развитием отдельных видов аэрометодов, применяемых в геологии, наблюдается и их значительная обособленность. В совершенно самостоятельный вид выделились аэрогеофизические работы, среди которых основное место принадлежит аэромагнитной и аэрорадиометрической съёмкам.

Под редакцией Еремина В.К в 1971 г. лабораторией аэрометодов, было издано методическое пособие по применению аэрометодов при геологических исследованиях.

В настоящее время аэрометоды вошли составной частью во все виды геологических исследований. Они в обязательном порядке используются при производстве геологосъемочных и поисковых работ всех масштабов, а также при изучении тектоники и неотектоники, структур рудных полей, гидрогеологических и инженерно-геологических изысканиях, изучении геологического строения мелководных водоемов, участков шельфа и т.д.

Однако, для решения ряда геологических задач даже высотные аэроснимки, полученные с высот свыше 20 км и имеющие масштаб около 1:100 000 оказались малоинформативными.

В геологии в настоящее время используются результаты различных видов съемок. Основными из них являются фотографическая, телевизионная, радиолокационная, инфракрасная (тепловая), сканерная, лазерная.

По материалам аэрофотосъёмки составляют геоморфологические, геологические, тектонические и инженерно-геологические карты и планы участков строительства многих крупных гидроузлов.

1.2. ДЗЗ

Хотелось бы остановиться на термине «дистанционное зондирование», неоднократно встречающемся в тексте. Этим термином ещё в советской литературе принято было переводить английское «RemoteSensing», что, строго говоря, неверно. Sensing скорее означает получение информации, идентификацию или индикацию, причём в нашем случае она осуществляется в основном путём регистрации естественного излучения, реже (при радарной съёмке) излучения, отражённого от посланного искусственного источника. Что же касается термина «зондирование», то в геологии им обозначают способы исследования литосферы, осуществляемые путём возбуждения искусственных сигналов, регистрации и интерпретации «откликов» на них земных недр (сейсмическое зондирование, электрозондирование и т.п.). (П. Кронберг, 1988)

Со второй половины 80-х годов в развитии технических средств ДЗ начался переход от использования фотоматериалов как носителей информации к цифровым системам, строящим изображения на магнитных носителях. Это привело к повышению динамического диапазона и линейности регистрации, появлению метрологически обеспеченных, оптически совмещённых по различным спектральным каналам цифровых дистанционных материалов, ориентированных не на визуальную, а на инструментальную (компьютерную) обработку. (Архипов В. С. И др., 2000)

В 1970-х годах и даже в начале 1980-х основная деятельность по компьютерной обработке данных дистанционного зондирования (ДДЗ) в мире была сосредоточена в ограниченном числе организаций геологического профиля и не только: у непосредственных поставщиков данных, т.е. у тех, кто принимал и распространял информацию с космических спутников, или в крупных научно-исследовательских учреждениях, зачастую военного или астрономического профиля, связанных с космическими исследованиями Земли и планет или с проблемами обработки изображения. Как правило, такие организации отличались хорошим техническим оснащением по меркам того времени. Несмотря на то, что трудились в таких организациях довольно большие научные коллективы, приоритетными были разработки различных методов обработки изображения, а осуществляли их в основном математики и программисты, а не представители прикладных наук (географы, геологи, лесники, ботаники, почвоведы и др.). Обычно результатом работ таких коллективов являлись уникальные пакеты программ, а не коммерческие универсальные продукты. В производственных объёмах осуществлялась, как правило, лишь предварительная обработка ДДЗ. Тематическое дешифрирование имело в основном характер научного эксперимента.

В России в начале 1990-х годов начали функционировать космические многоспектральные и радиолокационные системы получения дистанционной информации в цифровом виде МСУ-М, МСУ-СК, МСУ-Э, Алмаз, а также фотографические системы высокого пространственного разрешения КФА-1000, МК-4, КФА-3000, ТК-350, КВР-1000. За рубежом широко используются данные многоспектральных и радиолокационных космических съемок систем Landsat MSS, EТМ+ (США), Spot (Франция), ERS (Европа), JERS-1, ADEOS (Япония), RADARSAT (Канада). В настоящее время общедоступными и активно распространяемыми для потребителей являются данные спутниковых съемочных систем LANDSAT, SPOT, IRS, QUICKBIRD, IKONOS, ORBVIEW, Ресурс.

Возможность и необходимость использования материалов ДЗ для решения широкого круга задач в области геологии и недропользования были показаны на различных примерах и декларативно отражены в ряде инструкций. Но работы такого плана, не смотря на их очевидную высокую информативность и относительную дешевизну, не нашли самого широкого применения, за исключением отдельных ведомства (во времена СССР) или компаний (в настоящее время). В первую очередь это обусловлено неудачными попытками фирм геологоразведочного профиля, не имеющих специальной базы (подготовленных специалистов по обработке и дешифрированию космоматериалов и в области ГИС-технологий, специальных программных продуктов и соответствующей вычислительной техники), получить качественную информацию из материалов КС.

Современные данные ДЗЗ представлены мультиспектральными и радиолокационными материалами, геологическая и прогнозно-поисковая информативность которых значительно выше, нежели космоснимков «видимых» диапазонов. Но это требует специальных знаний и технологий в их обработке.

1.3. ГИС

Пионерский период (поздние 1950е — ранние 1970е гг.)

Было проведено исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

· Появление электронных вычислительных машин (ЭВМ) в 50-х годах.

· Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.

· Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.

· Создание формальных методов пространственного анализа.

· Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е — нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

· Автоматизированные системы навигации.

· Системы вывоза городских отходов и мусора.

· Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е — настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е — настоящее время)

Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

2. ОБЪЕКТЫ ИЗУЧЕНИЯ, ЦЕЛИ И ЗАДАЧИ АЭРОКОСМИЧЕСКИХ МЕТОДОВ

Объект исследований с точки зрения аэрокосмических методов рассматривается как пространственно-временная категория иерархического строения – мелкие объекты включены в более крупные, кратковременные процессы – в долговременные. Важнейшая характеристика объектов съёмки – их отражательно-излучательная способность. То есть объектами изучения является Земля, земная поверхность, ландшафты, горы, реки и другое множество составляющих нашей планеты. Физическое поле Земли является главным предметом исследования.

Цели, которые ставят учёные: достижение новых технологий, усовершенствование уже имеющихся и разработка способов получения подробной информации о местности по снимку.

При дешифровании геологических объектов на аэрокосмических снимках задачами являются изучение ландшафтной оболочки земной поверхности, геоморфологических особенностей территории и их анализ. Также изучение характера тектоники, морфологии структурных форм. Уточнение, детализация или создание новых карт (геологических, тектонических, геоморфологических, сейсмического районирования, инженерно-геологических, прогнозных и других) и изучение современных геологических процессов составляют основные задачи.

3. ФИЗИЧЕСКИЕ ОСНОВЫ ДИСТАНЦИОННЫХ ИССЛЕДОВАНИЙ

Под аэрокосмическими методами принято понимать совокупность методов исследований атмосферы, земной поверхности, океанов, верхнего слоя земной коры с воздушных и космических носителей путём дистанционной регистрации и последующего анализа идущего от Земли излучения. Аэрокосмические методы обеспечивают определение точного географического положения изучаемых объектов или явлений и получение их качественных или количественных характеристик. Они не только упрощают изучение труднодоступных территорий, но и обеспечивают географа такой геопространственной информацией, которую другими способами получить не удаётся.

В зависимости от характера регистрируемого физического поля и типа используемого приёмника аэрокосмические методы принято подразделять на четыре группы: аэрофотографические, аэрофотоэлектронные, аэровизуальные и аэрогеофизические. Аэрофотографические методы используют для регистрации электромагнитных колебаний.

С помощью дистанционных исследований изучают физическое поле Земли на расстоянии с целью получения информации о строении земной коры. Физической основой дистанционных методов исследования является излучение или отражение электромагнитных волн природными объектами. При геологических изысканиях, которые проводятся с самолётов, космических кораблей и спутников, применяются методы дистанционного исследования, использующие видимый и ближний инфракрасный диапазоны электромагнитного спектра и специальные виды съёмок. Последние включают в себя методы, использующие область электромагнитного спектра, невидимую человеческим глазом, и методы, основанные на изучении геофизических параметров Земли. К дистанционным методам исследования относятся:

1. Методы дистанционного излучения земной поверхности в видимой и ближней инфракрасной области электромагнитного спектра: а) визуальные наблюдения; б) фотосъёмка; в) телевизионная съёмка.

2. Методы дистанционного излучения земной поверхности, регистрирующие невидимую часть электромагнитного спектра излучения Земли: а) инфракрасная съёмка; б) радиолокационная съёмка; в) спектрометрическая съёмка; г) ряд специальных съёмок (лазерная, ультрафиолетовая, магнитная, радиационная), не нашедших пока сколько-нибудь широкого применения в геологии.

В настоящее время современная аппаратура, применяемая при фотографировании телевизионной съёмке, позволяет проводить исследования в более широком диапазоне спектра, включая ультрафиолетовый и инфракрасный.

Таблица 1. Диапазоны длин волн спектральных цветов (Бузинов Б.И. и др., 1997)

Длина волны, нм Спектральный цвет
380-450
450-480
480-510
510-560
560-585
585-620
620-780
фиолетовый
синий
голубой
зелёный
жёлтый
оранжевый
красный

Таблица 2. Диапазоны спектра, важные для данных дистанционного зондирования (Бузинов Б.И. и др., 1997; Китов А.Д., 2000)

Диапазон спектра Длина волны
дальний ультрафиолетовый
средний ультрафиолетовый
ближний ультрафиолетовый
видимый
ближний инфракрасный (фотографический)
средний инфракрасный
средний инфракрасный (тепловой)
дальний инфракрасный
микроволновой
радиоволны сверхвысоких частот (СВЧ)
менее 200 нм
200-300 нм
300-380 нм
380-780 нм
780-1100 нм
1500-2500 нм
3500-5000 нм
8000-14000 нм
0,3-10 см
более 10 см

Особое значение при работе с данными дистанционного зондирования Земли имеет пространственное разрешение съёмки. Дело в том, что космические снимки, полученные с помощью сканерных систем некоторых спутников (например, Ресурс-О, Метеор, Landsat, SPOT, IRS, Ikonos, QuickBird и др.), передаются на Землю уже в цифровом виде. Такие снимки представляют собой сложные, зачастую многослойные, растровые изображения. Каждой ячейке (пикселю) таких растров соответствует определенный квадрат земной поверхности. Поэтому, как правило, пространственное (геометрическое) разрешение ДДЗ измеряется в метрах на пиксель или просто в метрах. Например, когда говорят о цифровом космическом снимке 10-метрового разрешения - это значит, что каждый пиксель этого снимка отображает квадрат земной поверхности размером 10х10 м. Считается, что чем меньше размер пикселя (в метрах) на снимке, тем крупнее масштаб изображения и выше разрешение снимка. Чем выше разрешение снимка, тем более мелкие объекты можно дешифрировать. Самое высокое разрешение имеют цифровые космические снимки с размером пикселя 1 м и даже менее. На снимках с таким разрешением можно различить объекты размером в один метр (автомобили, отдельно стоящие деревья, группы людей и т.п.). Примеры космических снимков с различным разрешением приведены на рисунках 1 и 2.

Спектральное разрешение съёмки - характерные интервалы длин волн электромагнитного спектра, к которым чувствителен датчик съёмочной платформы.

Радиометрическое (яркостное) разрешение съёмки - число возможных кодированных значений (уровней квантования) спектральной яркости в файле данных дистанционного зондирования для каждой зоны спектра, указываемое числом бит.

Временное разрешение съёмки - частота получения снимков конкретной области

Помимо пространственного разрешения для данных дистанционного зондирования важны ещё три типа разрешения съёмки (Лурье И.К., Косиков А.Г., 2003): спектральное, радиометрическое (яркостное) и временное.

Рис. 1. Лугинецкое нефтегазовое месторождение в Томской обл. (фрагмент космического снимка Ресурс-О1 с пространственным разрешением 40 м) (www.spaceimaging)
Рис. 2. Центральная часть г. Вашингтон (фрагмент космического снимка Ikonos с пространственным разрешением около 1 м) (www.spaceimaging)

Виды данных дистанционного зондирования

Данные дистанционного зондирования Земли являются очень важным источником пространственных данных в ГИС.

Все ДДЗ делятся на три категории:

  1. наземная съёмка
  2. аэрофотосъёмка
  3. космическая съёмка

Съёмки могут быть пассивными, когда фиксируется собственное или отраженное солнечное излучение, и активными, когда снимаемые объекты облучаются, например, радиоволнами. В зависимости от фиксируемого диапазона электромагнитного излучения различают следующие виды дистанционного зондирования:

  1. ультрафиолетовая съёмка
  2. съёмка в


    29-04-2015, 01:05

Страницы: 1 2 3
Разделы сайта