С флюидодинамических позиций объясняется и формирование месторождений УВ Днепровско-Донецкого авлакогена [9]. В работе делаются выводы о широких масштабах вертикальной миграции УВ, что сопровождается дополнительным конвективным прогревом осадочных толщ и активизацией вследствие этого генерации УВ из нефтематеринских свит. Вертикальная миграция осуществляется как сквозь коллектора, так и аргиллиты, покрышками служат только образования соли. Отводя преобладающую роль осадочно-миграционной теории образования нефти и формирования месторождений УВ, авторы считают необходимым признать глубинные источники генерации нефти, что объясняет закономерности размещения месторождений нефти в изучаемом ими регионе и открывает большие возможности для решения прогнозных задач поисков УВ-сырья.
В работе Н.Ф. Чистякова проводится районирование территории Западно-Сибирского НГБ по величине температурного градиента, который изменяется от 1,8 до 6,1˚С/100 м [10]. Установлен рост температур от сводов к крыльям структур и ВНК. Эти аномалии автор связывает со следующими различными стадиями формирования месторождений УВ: формирующиеся, закончившие формирование, молодые залежи (прекращение поступления УВ из омывающих залежь нагретых седиментогенных(элизионных) вод из нефтематеринских пород) и зрелая залежь. По мнению автора, элизионные воды на различных стадиях катагенеза более прогреты, чем те же воды на стадии диагенеза, т.е. на процессы формирования геотермических аномалий по площади и разрезу оказывают влияние процессы преобразования рассеянного органического вещества – генерация УВ. Чем ближе зона формирования месторождений УВ к нефтематеринским породам, тем выше температура в залежи и большее значение геотермического градиента. Новизной, по мнению автора, является то, что геотермические аномалии являются следствием химического преобразования керогена, битумоидов и глинистых минералов пород, а не наоборот, как это принято считать. Автор полагает, что вся система в разрезе мезозойских отложений Западно-Сибирского НГБ является неравновесной – переходная стадия от диагенеза к катагенезу, т.е. "изменение химических полей на стадии катагенеза вызывает изменение физических полей (температур и давлений)" [10]. Построенные карты приведённых пластовых давлений отражают сложное разнонаправленное распределение латеральных градиентов (Федоровское месторождение, пласт БС10 , Сургутский район), что свидетельствует, по мнению автора, о поступлении вод элизионного происхождения с пониженной минерализацией с юго-западной стороны месторождения в направлении глинизации разреза при увеличении пластовых давлений от крыльев к сводовой части (перепад давлений 1 МПа). Это свидетельствует о молодости залежи. Поступающие, возрожденные из глинистых одновозрастных пород, воды соответствуют стадии катагенеза. В пределах одного месторождения одновременно имеются воды хлор-кальциевого типа (элизионные воды зоны протогенеза) и гидрокарбонатные натриевые воды (элизионные воды зоны катагенеза). Минерализация в этом случае меняется от 12 до 20 г/л. Аналогичное распределение приведенных давлений наблюдается на Холмогорском месторождении (от крыльев к своду – перепад давлений 1,4-2,4 МПа) при преобладающем направлении потенциального движения со стороны Юганской впадины. Минерализация подземных вод в пределах месторождения меняется от 12 до 22 г/л. Пониженная минерализация связана с гидрокарбонатными натриевыми водами, а повышенная – с хлоридными кальциевыми водами. На Салымском месторождении (недоформировавшаяся залежь) поток направлен со стороны Юганской впадины. Воды гидрокарбонатные натриевые, соответствующие зоне катагенеза, мало меняются в пределах месторождения. Воды хлоридно-кальциевого типа зоны протокатагенеза, "пришедшие в ловушку с первыми порциями УВ, уже вытеснены" [10]. Также описывается и объясняется гидрогеологическая ситуация на Северо-Хохряковском, Ем-Еговском, Уренгойском месторождениях.
Катагенетические процессы преобразования пород носят "прерывисто-непрерывный характер". Масштабы этих процессов "огромны". Неравновесное состояние взаимодействия "химических и физических полей" установлено на различных стадиях катагенеза, что "требует пересмотра устоявшихся положений о флюидодинамической системе нефтегазоносных бассейнов, формирующихся в недрах НГБ на стадии катагенеза" [10].
С флюидодинамических позиций также рассматривается нефтеносность Припятского палеорифта [11], который сформировался в герцинский этап (верхнефаменское время). В его пределах выделяется 5 мантийных разломов, по которым осуществлялся кондуктивный и конвективный теплоперенос, сопровождающийся внедрением основной и ультраосновной магмы в кору и осадочный чехол. что привело к активизации процессов генерации УВ из нефтематеринских свит. При этом на различных уровнях геологического разреза формировались главные фазы нефтегазообразования. Главный очаг нефтегазообразования тяготеет квосточной части Припятсюй впадины, где расположены основные месторождения нефти (более 60), т.е. процессы нефтегазообразования из ОВ связываются с рифтогенезом, вертикальным движением магмы, обладающей высокой температурой и активными потоками тепла, интенсифицирующими процессы образования УВ из рассеянного ОВ в нефтематеринских породах [11].
Таким образом, осадочно-миграционная гипотеза, дополненная сведениями о флюидодинамических процессах, широко используется для объяснения процессов нефтегазообразования в различных регионах. Такие примеры многочисленны.
1.2 Критика осадочно-миграционной "теории" происхождения нефти
Соображения общего характера (геологические). Наиболее обстоятельная критика осадочно-миграционной "теории" приведена в работах Ю.И. Пиковского (1986, 2002 гг.). В настоящее время как основные доказательства осадочно-миграционной, так и критика минеральной гипотезы базируется на геохимических аргументах. Но и на этом "поле битвы" появляются факты, которые интерпретируются по-разному.
Ю.И. Пиковский в своей работе 1986 г. формулирует следующие воп- росы, не имеющие ответа в рамках осадочно-миграционной теории:
1) стадии литогененеза, с которыми связано нефтеобразование; 2) источники энергии для синтеза УВ из керогена;
3) механизм образования месторождений из рассеянной микронефти;
4) формы и движущие силы миграции нефти в осадочных породах;
5) происхождение различных геохимических типов нефтей, порой в пределах одного месторождения;
6) неравномерность распределения месторождений УВ по площади распространения ОБ при повсеместном распространении нефтематеринских пород;
7) наличие залежей УВ в нижних частях осадочного чехла и в кристаллических породах фундамента, сложенного, как правило, разновозрастными породами различного генезиса, и наличие там же рассеянных УВ и углеродистых минералов, нередко заключенных в кристаллы минералов (газовожидкие включения и включение капелек нефти);
8) очевидная связь месторождений УВ с глубинными разломами;
9) невозможность объяснить наличие средних, крупных и гигантских месторождений УВ;
10) отсутствие четких критериев выделения нефтематеринских пород, за исключением рассеянной нефти, близкой по составу к обычной нефти.
Все вышеперечисленные вопросы требуют ответов, которые не найдены на протяжении десятков лет.
Анализируя две основные теории происхождения нефти и их подтверждение на практике, Ю.И. Пиковский [2] приводит интересную таблицу (табл. 1) отношений следствий, вытекающих из альтернативных теорий нефтегазообразования (органическая и минеральная), к установленным особенностям нефтегазонакопления на Земле.
В заключение автор отмечает, что существующие доказательства "торжества осадочно-минеральной теории происхождения нефти" [2] не однозначны, не решены (и, возможно, не будут решены), так же как проблемы миграции УВ и их концентрации в месторождения.
Минеральная теория лучше справляется с этими проблемами. Осадочные отложения играют главенствующую роль лишь в накоплении и сохранении месторождений УВ, сформировавшихся за счет глубинной дегазации Земли, из-за наличия в их составе покрышек различного происхождения.
Таблица1
Особенности нефтегазообразования(по Ю. И. Пиковскому, 2002г. с дополнениями В. И. Дюнина)
Особенности нефтегазонакопления | Следует ли без дополнительных допущений данное явление из концепции нефтегазоообразования в её общем виде | |
Приуроченность к осадочным бассейнам | Следует | Следует |
Наличие в горных породах нефтегазоносных районов рассеянной нефти, близкой по составу к нефти в скоплениях | Следует | Следует |
Вторичность скоплений нефти и газа в природных резервуарах | Следует | Следует |
Возможность образования крупных скоплений углеводородов по всему разрезу осадочного бассейна, включая кристаллический фундамент, независимо от литологического состава горных пород, содержания и типа в них органического вещества | Не следует | Следует |
Неравномерность нефтегазонакопления. Высокая плотность гигантских и сверхгигантских месторождений нефти и газа в отдельно относительно небольших районах | Не следует | Следует |
Аномально-высокие давления в скоплениях углеводородов | Не следует | Следует |
Относительно узкий диапазон геологического времени, близкий к современной эпохе, в котором образовались все крупные месторождения мира | Не следует | Следует |
Связь месторождений нефти и газа с новейшими движениями земной коры, продолжение процесса нефтегазонакопления в настоящее время | Не следует | Следует |
Приуроченность скоплений нефти и газа к крупным активизированным разломам глубинного заложения | Не следует | Следует |
Восполняемость эксплуатационных запасов месторождений УВ | Не следует | Следует |
Приведу еще доказательства, ставящие под сомнение органическую теорию формирования нефти. "Слабость" осадочно-миграционной теории, по данным И.И. Чебаненко и др. [12], заключается в следующем: 1) в лабораторных условиях не доказана возможность преобразования органических остатков в нефтяное вещество; 2) отсутствие в нефтематеринских породах остатков ОВ, полностью не преобразованных в нефть (целлюлоза, хитин, кости и др.), а также остатков микронефти или следов ее присутствия (физическая невозможность полного завершения процессов миграции микронефти без присутствия следов ее миграции), а также месторождений нефти и газа.
Также не ясно, чем объяснить наличие непреобразованных остатков растений и микрофлоры, мигрировавших и мигрирующих в вертикальном направлении в чистом виде и имеющих возраст от протерозойского до современного. Что мешает микрофоссилиям преобразоваться в микронефть? Например, наличие палеозойских форм в отложениях баженовской свиты, содержание которых в процессе эксплуатации возрастает с 24 до 85 – 100%. Эти растительные остатки находятся в более благоприятных термодинамических условиях, чем отложения баженовской свиты, и за время с палеозоя до ныне должны были бы преобразоваться в микронефть. Однако этого не произошло. Аналогичная ситуация существует и в других регионах, где проводились палинологические исследования.
Геохимические свойства рассеянного органического вещества и нефтей. Совершенствование геохимических методов исследования нефтей, ОВи их использование на практике приводит к результатам, ставящим под серьезное сомнение осадочно-миграционную гипотезу происхождения нефти. Так, в работах Г. Н. Гордадзе [13, 14] приводятся результаты детального изучения состава рассеянного ОВ и нефтей (методы корреляции нафтидов, основанные на сопоставительном анализе широкого спектра УВ-показателей нефтей и рассеянного органического вещества в системах нефть – нефть и нефть – органическое вещество) и установлены несоответствия с осадочно-миграционной "теорией". Эти несоответствия (противоречия) заключаются в следующем (приведены дословно, чтобы исключить непонимание):
– "Во многих случаях в составе ОВ материнских пород имеются соединения, отсутствующие в нефтях (например фталаты). Фталаты не найдены нами не только в органическом веществе пород, нои в продуктах термолиза керогена… Замечательным свойством этих соединений является полное отсутствие их в нефтях, что открывает возможности отделения нефтегенерирующих толщ от толщ, не производящих нефть и газ;
– Часто встречаются образцы пород, где степени созревания ОВ одновозрастных толщ отличаются между собой даже в нескольких сантиметрах;
– На масс-хроматограммах с m/z 217 битумоидов пород часто встречаются неидентифицированные УВ (скорее всего, гомологический ряд), которые не встречаются в нефтях;
– Стерановые коэффициенты зрелостей нефтей, как правило, выше таковых материнского ОВ. Более того, аналогичная картина наблюдается и в продуктах термолиза керогена и асфальтенов пород и нефтей;
– Степень зрелости ОВ, оцениваемая по величине стеранового параметра термолизатов, увеличивается в ряду: смола – кероген – асфальтены – битумоид-нефть" [13].
По мнению авторов, стоящих на позициях органического происхождения нефти, приведенные факты не носят систематического характера и не отвергают осадочно-миграционную гипотезу происхождения УВ, а ставят вопрос о том, все ли нефтематеринские породы способны генерировать нефть.
Для Салымского (баженовская свита) и Самотлорского (пласт БС8 ,)месторождений по результатам мягкого термолиза в числе других выводов [14] установлено, что в термолизаторах смол и асфальтенов (компоненты рассеянного органического вещества) присутствует олеанан, который отсутствует в нефтях и продуктах термолиза асфальтенов, что вызывает удивление авторов. Нет причин удивляться этому факту, если принять во внимание предыдущую работу одного из авторов [13], основным выводом которой является несоответствие рассеянного ОВ в породах ОВ нефти.
Другими словами, нефть имеет неорганическое происхождение или смешанное.
Изотопия газов. Отдельным вопросом в проблеме происхождения углеводородов стоит изотопный состав газов. В работе Э.М. Прасолова (1990 г.), являющейся крупным обобщением по изотопам газов, приведена таблица (табл. 2), позволяющая, с точки зрения автора и его последователей, оценивать генезис изотопов гелия.
Таблица 2
Отношение3 Не/4 Не для разных геологических сред
Геологическая среда | Отношение іНе/Не |
Мантия | (1,2-0,3)10 |
Районы вулканической деятельности | n·10 |
Залежи нефти и газа(в основная масса) | n·10 |
Земная кора, граниты | (0,8–1,2) 10-8 |
Осадочные породы | (0,5–3,5) 10-8 |
Как видно из приведенной таблицы, соотношение изотопов гелия в залежах нефти и газа на 2 – 3 порядка меньше, чем в мантии, что на первый взгляд является главным аргументом в пользу "торжествующей" осадочно-миграционной теории. Содержание мантийного газа "не превышает нескольких процентов, в действительности (за редким исключением) оно еще меньше", т.е. месторождения УВ имеют исключительно органическое происхождение [4].
По мнению Э.М. Прасолова, изначально "первичное распределение изотопов определило изотопный состав земной коры. Однако при различных геохимических процессах..., происходящих в земной коре, особенно при низких температурах, осуществляется перераспределение изотопов между различными веществами и их фракциями" (Прасолов, 1990 г. с.27). Разделение изотопов осуществляется при их миграции, связанной с их летучестью, а их соотношение определяется многими процессами, учесть которые в полной мере не представляется возможным.
Автор предлагает геохимическую классификацию, определяющую не только их происхождение, но и соотношения, которая включает различные эффекты: 1) генетические, 2) миграционные; 3) взаимодействия.
Генетические эффекты. Образование изотопа 4 Н связано с естественным радиоактивным распадом 238 U, 235 U и 232 Th. Периоды полураспада соответственно равны 1,5369·10/год, 9,72·10/год и 4,88·10/год. В среднем в коре и мантии гелия (Не) образуется (3 – 4) 10 мі/год. Содержание радиоактивных элементов в породах различно, что приводит к разным скоростям и количествам образования Не. Свинец, так часто наблюдаемый в глубоких флюидах и практически во всех месторождениях УВ, является конечным продуктом распада не только урана (РЬ) и тория (РЬ), но и актиния (РЬ). Скорости генерации гелия в различных породах различны (в смі/г/год):
• кислые изверженные породы – 10,
• изверженные ультраосновные – (2 – 3) 10,
• черные сланцы – б 10,
• глины – 2 10
• карбонаты – б 10.
Из приведенных выше скоростей генерации Не следует, что количество образовавшегося изотопа при прочих равных условиях зависит от генезиса пород, их объема, состава и соотношений в геологических разрезах конкретных территорий.
Образование іНе связано с наведенным (индуцированным) радиоактивным распадом лития. Эти процессы связаны с бомбардировкой ядер лития тепловыми нейтронами при естественном радиоактивном распаде. В этом процессе 4 Не образуется несоизмеримо меньше. Вместе с тем соотношение 3 Не/4 Не должно быть вполне определенным, отражающим процессы естественного и наведенного радиоактивного распада (нейтроны космического происхождения не могут проникнуть на сколь-нибудь значимую глубину) и определяется следующим соотношением (там же, с.32):
3 Не/4 Не = Ψ(άn) Рth fLi , где Ψ(άn) – выход нейтронов на одну ά-частицу, Рth – вероятность достижения нейтронами тепловых скоростей, необходимых для бомбардировки ядер лития, fLi – доля нейтронов, захваченных ядрами лития. Значение 3 Не/4 Не должно составлять в обычных гранитных породах – 10, т.е. это отношение существенно зависит от состава пород, и прежде всего от содержания в них лития, продолжительности радиоактивных процессов (т.е. от возраста пород) и вероятности достижения нейтронами тепловых скоростей, необходимых для образования іНе.
Перераспределение изотопов – "вызывается неравноценностью изотопов одного и того же элемента в химических реакциях и физических процессах" (там же, с.34). Перераспределение изотопов между реагентами осуществляется в соответствии с энергетической выгодностью. "Изотопные соотношения… если и не сохраняются в течение их жизни, … являются … отправной точкой, от кoтopoй отсчитываются все nоследующие изменения." (там же, с.34).
Автор вводит понятие коэффициента разделения для оценки фракционирования изотопов. Разделение изотопов определяется обменными процессами при образовании веществ. Кинетический эффект разделения изотопов проявляется в открытых (незамкнутых) системах, в необратимых реакциях (все реакции в геологических процессах необратимы) и "обусловлен скоростью реакций разных изотопных форм. Фракционирование изотопов в ходе однонаправленных реакций заключается в предпочтительном накоплении легкого изотопа в продуктах реакции" (там же, с.38). Коэффициент фракционирования определяется через соотношение скоростей реакций изотопных форм. Кинематический эффект, так же как и термодинамический, зависит от температуры и с ее ростом уменьшается.
При больших массах веществ коэффициент разделения изотопов определяется из следующего соотношения. Здесь μ = m – приведенные массы молекул. Поскольку μ*, всегда больше μ, то а всегда больше единицы. Точные расчеты а в большинстве случаев оценить или затруднительно, или невозможно.
В однонаправленных реакциях изотопно-легкий продукт в начале реакции довольно быстро становится тяжелее исходного вещества, из чего следует, что при постоянном удалении изотопно-тяжелых порций изотопно-легкого продукта будет больше относительно исходного. При этом количество продукта в каждой последующей порции будет меньше.
Многие соотношения изотопов сильно изменяются во времени, что связано с содержанием радиоактивных и некоторых стабильных элементов. "Поэтому нельзя исключить, что разным типам пород будут свойственны свои изотопные соотношения" (там же, с.40), которые зависят от вещественного состава и возраста пород (что очень важно), но и от других причин.
Миграционные эффекты.
К
миграционным эффектам относятся: диффузия, растворение в жидких и твердых средах, их дегазация, сорбция и десорбция, испарение и конденсация и др. Все это многообразие процессов и их сочетаний в различных термодинамических условиях определяет сложность прогноза в соотношении изотопов.
"Появлениегазов в термодинамической обстановке, отличной от той, в которой
29-04-2015, 00:35