Движение флюидов: происхождение нефти и формирование месторождений углеводородов

формировался их изотопный облик, смешение газов генетически чуждых генераций могут приводить к кажущимся "миграционным" изотопным эффектам" (там же, с.47).

Эффекты взаимодействия. Смешение и изотопный обмен различающихся изотопных форм различного генезиса способны приводить к вариациям изотопного состава. Эти процессы имеют широкое распространение из-за высокой подвижности природных газов.

"Инертные газы мантии также должны составлять смесь первичных и радиогенных газов, соотношение между которыми изменяется во времени из-за радиоактивных процессов и дегазации мантии" (там же, с.47). В осадочной толще тоже идет активное образование газов и их миграция в вертикальном направлении к поверхности Земли. Диагностика смешанных газов чрезвычайно сложна. Следует исходить из того, что в любой момент прошлого и в настоящее время содержание изотопов и их отношения не равновесны и меняются во времени с изменением термодинамических условий.

На неоднозначность заключений о генезисе УВ, получаемых на основании изучения соотношения изотопов, указывает Э.М. Прасолов в приведенной выше работе, а также последующих [15, 16].

Широкий диапазон изменения изотопного состава углерода установлен для карбонатов подводных грязевых вулканов Черного моря. Здесь значения δС меняются от -43,3 до -10,5%о, авторы (включая Э.М. Прасолова [15]) не могут однозначно интерпретировать этот факт и приводят "временное" его объяснение. Аналогичная ситуация складывается для природных карбонатных труб в районах подводной разгрузки флюидов в Кадисском заливе Атлантического океана [16]. И здесь так же объяснение носит предположительный характер.

М.В. Родкина в своей работе [17] оспаривает вывод Э.М. Прасолова о пренебрежимо малом вкладе мантийных газов по данным изучения изотопного состава углерода и гелия и выделяет два вида погрешностей.

Первая погрешность связана с выбором характерных значений соотношений (погрешность, как в сторону завышения, так и в сторону занижения).

Обычно используется отношение СН/іНе10, характерное для высокотемпературных фумарольных и вулканических газов, и даже "для наиболее обогащенных мантийной компонентой месторождений Тихоокеанского кольца получаем величину вклада мантийных УВ не более 0,1 – 0,5%" [17, с.131]. В низкотемпературных зонах (амагматические области) ситуация иная.

Так, в тыловом бассейне Окинава характерная величина отношения СН/іНе близка к10 и, как правило, меньше значения отношения іНе/He, характерен также более легкий состав углерода. Кроме того, по геологическим данным нет оснований полагать обогащение этих газов газовыми компонентами осадочных пород. С удалением от вулканической области отношение іНе/He уменьшается. Одновременно уменьшаются концентрации и утяжеляется изотопный состав СО,растет относительная концентрация Н и СН4 . Аналогичная ситуация наблюдается в Калифорнии, где отношение концентраций СН/іНе еще выше и составляет около 1010 , а также наблюдается повышенное соотношение изотопов гелия. В этом районе несомненно обогащение метаном осадочных пород.

Вторая погрешность связана "с неучетом потока субдуцированного вещества, предположительно поступающего из зон субдукции в мантию тыловых областей" [72, с.132]. Эти потоки могут быть двойного генезиса: мантийного и биогенного, что неизбежно приводит кзанижению мантийной составляющей.

В континентальной коре по данным петрологических исследований эпизодически (квазипериодически) возникает восстановление флюида из зон субдукции, что приводит к формированию флюидного режима. Это подтверждается результатами моделирования этого процесса и данными сейсмотомографии. Вместе с тем имеются доказательства существенного вклада мантийных газов в формирование месторождений УВ: во-первых – изотопия сопутствующих компонентов (Nd, Pb, Sr) в большинстве месторождений бывшего СССР и Китая подтверждает их коровое или мантийное происхождение; во-вторых – высокие значения іНе/He свидетельствуют об их мантийном генезисе. Для месторождений, приуроченных к активным границам плит, это соотношение повышено. Тем не менее, это повышение незначительно, что интерпретируется не в пользу участия мантийных флюидов в формировании месторождений УВ.

По утверждению М.В. Родкиной, интерес представляет не только средняя величина этого соотношения, но и характер вариаций изотопов для близко расположенных месторождений. На примере месторождений Калифорнии, Западной Сибири и района Green Tuff(Япония) показано, что при значительном разбросе точек для каждого района наблюдается высокая корреляция (выше 99%) величин отношения іНе/He и изотопного состава УВ. Кроме того, эмпирические прямые для отношений lg(іНе/He)/13 С для всех районов субпараллельны. Рост іНе/He приводит к утяжелению изотопного состава метана (до 20 – 30%), что соответствует увеличению вклада мантийной составляющей. Представленная на рисунках в работе [17] закономерность изменения отношения lg(іНе/He)/13 С , по мнению автора, не является универсальной. Например, она не выполняется для центральных частей Америки, широтного Приобья. Приведённые данные свидетельствуют о значительном обогащении континентальных окраин рециклированным флюидом и стирании мантийных изотопных меток со временем вверх по разрезу.

В качестве аргументов в пользу неорганического происхождения УВ в работе В.А. Краюшкина [18] приводится информация о содержании δ13 С в различных природных объектах (табл. 3).

Таблица 3

Содержание б13 С в природных объектах

Объект Содержании б13 С,‰
Природные нефти От -20 до -30
Попутный нефтяной газ От 30 до -55
Природный газ От 20 до -62
Метан от ферментативного брожения в желудке животных От 62
Морские метаногидраты От 36,1 до 94
Фишер–Тропшевая нефть От 14 до -65
Графит хондроидов -20
Кероген углистых метеоритов От 17 до -27
Некарбонатный углерод ультрамафитов и первичных флюидных включений мантийных перидотитовых ксенолитов От 22 до -29
Природные алмазы От 0,5 до -33
Современная морская биота тропиков и умеренных широт От 8 до -34

Различное содержание изотопов углерода свидетельствуют о "неодинаковом нефтенасыщении коры и мантии по площади, разрезу и наличии там гигантских одинарных или кластерных очагов естественного небиотического синтеза нефти и природного газа" [18].

Биогенным признаком происхождение нефти считается изотопный состав углерода с δ13 С -25 – -28%о. Ранее содержание этого изотопа мантийного происхождения (в частности в алмазах) считалось значительно выше – δ13 С -2 – -7,2%o. Однако в настоящее время обнаружены алмазы с δ13 С - 33%о и меньше, т.е. диапазон мантийного углерода значительно расширился, в связи с чем однозначность биогенного происхождения углерода в нефтяных и газовых месторождениях вызывает определённые сомнения. Образование месторождений УВ, несомненно, сопровождаемое процессами их преобразования, миграции и массобмена приводит к изменению изотопного состава углерода, который изначально может быть продуктом как биогенного, так и абиогенного происхождения [19]. В этой работе также показано, что при окислительном гидратодиспропорционировании полиуглеродных веществ из-за различия скоростей элементарных процессов разрыва связей в системе различных сочетаний 12 С– 13 С,12 С – Н, 13 С – Н и образования СО2 , содержащего преимущественно 13 С, формируются УВ-молекулы, обогащенные легким изотопом углерода.

По данным М.И. Кучера [20], содержание и изменение изотопа 13 Сзависит от новейшей тектономагматической активности (в том числе измеренной инструментальными методами), когда отдельным участкам соответствует более облегченный состав углерода (до -20 – -21‰), а его утяжеление (до -8 – -10‰) наблюдается на участках со снижением относительной активности. В первом случае работает более глубинный очаг магматической активности, во втором – приповерхностный, на стадии затухания магматической активности.

По мнению В.А. Кривошея "ведущим процессом образования всего спектра УВ-соединений нефти и газа является высокотемпературный минеральный синтез, обеспечивающий термодинамически равномерное распределение изотопов углерода во всех компонентах УВ-систем. Глубинные источники выступают как генераторы волновой направленной эволюции процессов синтеза УВ" [21]. Исследованиями изотопного состава углерода в газово-жидких включениях (газ, нефть, битумоиды) установлено не известное ранее явление квантового распределения изотопного сдвига δ13 С. Поступление глубинного УВ-вещества является импульсным. Особенности его фазового состояния, широкий спектр физико-химических показателей и свойств отражает несколько циклов миграции во времени. Это также находит подтверждение в работах [1, 22, 23].

Как уже отмечалось, одним из аргументов в пользу органической теории происхождения нефти и формирования месторождений УВ является соотношение изотопов гелия 3 Не/4 Не для различных геологических сред (см. табл. 2). Главным при этом является отличие изотопного состава мантийного и осадочного гелия (порой на три порядка). Это утверждение опровергается результатами исследований этого соотношения в пределах Кольского п-ова, где в интрузивных ультраосновных породах соотношение 3 Не/4 Не меняется в очень широких пределах (от 1 – 2.10-8 до 3,3 10-5 ) [24].

В магматических породах столь высокие значения этого соотношения ранее обнаружены не были. Авторы справедливо утверждают, что в настоящее время отсутствуют однозначные метки, свидетельствующие о том или ином генезисе изотопов гелия, так как современный состав изотопов является продуктом многих процессов: степень дегазации расплавов, содержание радиоактивных минералов и длительность их распада, концентрация мигрирующих изотопов и их потери, сохранность изотопов, длительность и интенсивность постмагматических процессов и многое другое.

Это подтверждается результатами изучения изотопов углерода на севере Западной Сибири [25, 26]. Особое внимание при этом отводилось поиску причин, приводящих кизменению δ13 С свободных газов по площади и разрезу. На гигантской Надымско-Медвежьей газовой залежи с севера на юг величина δ13 С возрастает соответственно с -52,9‰ до -40,8‰, а в пределах Уренгойской залежи вниз по разрезу δ13 С меняется с -43,6 – -44,8‰ (глубина 1104 – 1150 м) до 42,6‰ (глубина 30 м). По разрезу газовых месторождений Ямальской нефтегазоносной области (НГО) δ13 С (в ‰) меняется следующим образом в отложениях различного возраста: валанжина – -32,4; апта – -40; альба – -39,2; сеномана – -47,6; в верхней части разреза (глубина 15 – 150 м) в многолетнемерзлых порода (K2 m–b–Q) эта величина составляет -70,4 – -76,8. На основе этого выделено два типа разреза: в первом наблюдается закономерное утяжеление изотопов углерода – миграционный генетический тип; во втором – относительно постоянное содержаниее δ13 С – сингенетический тип. Первый тип разреза устанавливается на многих газовых месторождениях и других регионов.

Таким образом, существующих в настоящее время данных явно недостаточно для однозначного решения вопроса о далях изотопов различных газов разного генезиса, и по этой причине преждевременно говорить о торжестве осадочно-миграционной теории происхождения нефти и формирования месторождений УВ на основе соотношенияизпотопов газов.

ЗАКЛЮЧЕНИЕ

1. Количественными расчетами и моделированием доказано, что ни нфильтрационное, ни элизионное питание не могут формировать региональных потоков флюидов в латеральном направлении. Этому направлению движения препятствует также пластово-блоковое строение нефтегазоносных комплексов. Это значит, что перенос рассеянных УВ и микронефти по напластованию пород невозможен и как следствие невозможно формирование сколько-нибудь значимых скоплений УВ за счет латеральной миграции.

2. Осадочно-миграционная гипотеза происхождения нефти постепенно сдает свои позиции, что проявляется: а) в расширении границ плавной фазы нефтегазообразования с глубин 1800 – 2000 м до нескольких километров и температур с 90 – 120˚С до нескольких сот градусов; б) в дополнении этой гипотезы флюидодинамической концепцией, т.е. признании гидротермальной деятельности, что неизбежно приведет к признанию определенной роли мантийных УВ, которые уже признаются, но пока им отводится незначительная роль (Б.А. Соколов); в) в признании того факта, что не все осадочные породы являются нефтематеринскими. Так, например, результаты геохимических исследований ОВ показали, что по УВ-биомаркерам ОВ абалакской свиты и нижневасюганской подсвиты не являются источником нефтей в горизонтах Ю1 , Ю2 , и пластах группы "Б" и "А" нижнемеловых отложений – ненефтематеринских свитах, несмотря на их нефтематеринский потенциал [13, 14 и др.].

3. Существующих в настоящее время данных о соотношениях изотопов различных газов явно недостаточно для однозначного решения вопроса о генезисе УВ. Спектр их соотношений для различных геологических сред постоянно расширяется.

4. Расширение спектра исходных веществ, химических элементов и катализаторов, термодинамических условий позволяет получать все больше синтезированных УВ, приближающихся по своему составу и свойствам к природным.

5. Таким образом, основные доказательства осадочно-миграционной гипотезы формирования нефти и образования месторождений УВ постепенно расшатываются в связи с новыми данными, получаемыми в различных областях, и все больше подтверждений появляется в доказательство минеральной или смешанной гипотез формирования УВ.

6. Для решения многих спорных вопросов и вообще проблемы образования нефти и формирования месторождений УВ совершенно необходима организация мониторинга на эксплуатируемых месторождениях. Целью такого мониторинга должно быть создание временных рядов, включая наблюдения за физическими и геохимическими свойствами нефти в процессе эксплуатации, геодинамические, гидродинамические, палинологические и другие виды наблюдений.

7. На настоящий момент нет ответа на следующий вопрос: почему в " одинаковых термодинамических условиях одни осадочные отложения, являются нефтематеринскими, а другие нет?

8. Наблюдаемая в настоящее время восполняемость эксплуатационных запасов на месторождениях, различие геохимических свойств нефти в пределах одного месторождения свидетельствуют не в пользу осадочно-миграционной гипотезы происхождения нефти и требуют своего объяснения.

Список литературы

1. Дюнин В.И. Гидрогеодинамика глубоких горизонтов нефтегазоносных бассейнов. М.: Научный мир, 2000. 471 с

2. Пиковский Ю.И. Концепция нефтегазообразования: практические следствия как критерий оценки // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 2. М.: ГЕОС, 2002. С. 82-85.

3. Баженова О.К., Соколов ЕА. Происхождение нефти – фундаментальная проблема естествознания // Тезисы докл. межд. конф. "Генезис нефти и газа и формирование их месторождений в Украине как научная основа прогноза и поисков новых скоплений". Чернигов. 2001. С. 10-12

4. Карцев А.А., Лопатин НВ, Соколов БА., Чахмахчев В.А. Торжество органической (осадочно-миграционной) теории нефтеобразования к концу ХХ в. // Геология нефти и газа. 2001. #3. С. 2-5

5. Дюнин В.И., Корзун А.В., Кирюхина ТА. Гидродинамика глубоких горизонтов и нефтегазоносность (на примере северной части Печорской впадины) // Тезисы ХIII геологического съезда Республики КОМИ "Геология и минеральные ресурсы Европейского Северо-востока России". Сыктывкар. 1999.

6. Соколов БА. Новые идеи в геологии нефти и газа. М.: МГУ, 2001. 480 с.

7. Соколов ЕА., Конюхов А.И. Инъекционная геология осадочных бассейнов и нефтегазоносность // Тезисы докл. ежегодной научной конф. "Ломоносовские чтения". М.: МГУ, 1995. С. 44

8. Коробков Ю.И. Возраст углеводородных скоплений в связи с проблемой поиска нефтяных и газовых месторождений // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 1. М.: ГЕОС, 2002. С. 253-255

9. Кабышев Б.П., Кабышев Ю.Б. Флюидодинамика: фактор созидания или разрушения и переформирования месторождений углеводородов // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 1. М.: ГЕОС, 2002. С. 191-193

10. Чистякова Н.Ф. Термобарические аномалии как отражение формирования углеводородного сырья (на примере Западно-Сибирского нефтегазоносного бассейна) // Геология нефти и газа. 2001. №3. С. 42-49

11. Конищев В. С, Ковтуна А.М. Нефтеносность и геодинамика Припятского палеорифта // Мат-лы Шестой межд. конф. "Новые идеи в гeoлогии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 1. М.: ГЕОС, 2002. С. 239-242

12. Чебаненко ИИ., Клочко В.П., Токовенко В.С., Евдощук НИ. Осадочно-неорганическая теория формирования нефтяных и газовых месторождений // Геология нефти и газа. 2000. №5. С. 50-52

13. Гордадзе Г. Н., Арефьев О.А. Некоторые существенные несоответствия состава органического вещества нефтематеринских толщ с нефтями // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 1. М.: ГЕОС, 2002. С. 135

14. Гордадзе Г. Н., Русинова Г. В. Углеводороды-биомаркеры в продуктах мягкого термолиза асф~льтенов и смол // Мат-лы Шестой ме~д. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". М.: ГЕОС, 2002. С. 137

15. Прасолов Э.М и др. Изотопный состав углерода и кислорода карбонатов в районах распространения подводных грязевых вулканов (Черное море) // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 225-226

16. Прасолов Э.М и др. Изотопный состав углерода и кислорода природных карбонатных труб в районах подводной разгрузки флюидов (Кадисский залив, Атлантический океан) // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 226-228

17. Родкина М. В. О погрешности методики определения вклада мантийной компоненты в составе природных УВ газов // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 2. М.: ГЕОС, 2002. С. 1 30- 1 34

18. Краюшкин В.А. Небиотическая нефтегазоносность недр // Тезисы докл. межд. конф. "Генезис нефти и газа и формирование их месторождений в Украине как научная основа прогноза и поисков новых скоплений". Чернигов. 2001. С. 16-17

19. Кулакова И.И., Руденко А.П. Фракционирование изотопов углерода в его круговороте на Земле // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 170-172

20. Кучер М.И. Эволюция изотопного состава углерода в процессах дегазации и дифференциации мантии // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 175-176

21. Кривошея В.А. Минеральный синтез углеводородов – ведущая концепция развития нефтегазовой геологии // Тезисы докл. межд. конф. "Генезис нефти и газа и формирование их месторождений в Украине как научная основа


29-04-2015, 00:35


Страницы: 1 2 3 4
Разделы сайта