Карбонатная толща мощностью около 400 м развита только в юго-восточной части исследованной площади в виде небольшой полосы, слагая мульдообразную синклинальную структуру, вытянутую в субмеридиональном направлении.
Состав толщи довольно однообразен. Это серые, темно-серые до черного цвета мраморизованные рифогенные известняки. Мраморизованные известняки содержат богатую фауну брахиопод, стеблей криноидей, фораминифер, кораллов, которые свидетельствуют о раннекаменноугольном возрасте отложений карбонатной толщи (Сначев, 1989).
2.2 Магматизм Кочкарского метаморфического комплекса
В пределах Кочкарского метаморфического комплекса широко представлены различные по возрасту, формационной принадлежности, структурному положению и составу массивы. Как видно из рис. 2, они занимают не менее 50 % территории.
Тела ультрабазитов разновозрастные, резко отличаются по структурному положению. Ранние (O-S1 ), очевидно автохтонные, развиты в западной части района, нередко ассоциируют с габброидами, примитивными вулканитами (базальтового состава), представлены небольшими телами ультрамафитов, залегающих среди метаморфических пород западнее Еремкинского массива, а также в обрамлении Борисовского массива в виде небольших тел. Сложены тела преимущественно антигоритизированными серпентинитами, оливин-тальковыми, пироксен-амфиболовыми породами и метасоматическими образованиями антофиллитового, тальк-антофиллитового, тремолитового составов. Данные образования отнесены В. И. Сначевым к западнокочкарскому плутоническому комплексу.
Массивы магматических пород габбро-диорит-плагиогранитной формации находятся в западной части района и представлены кукушкинским комплексом (Сначев,1989). Интрузивные породы комплекса имеют уплощенную форму и сложены габбро, габбро-диоритами, кварцевыми диоритами, здесь же отмечены гранитоиды габбро-сиенитовой и монцонит-гранодиоритовой формаций.
На территории Кочкарского метаморфического комплекса закартировано более десятка массивов гранитоидов. В восточной части района развиты аллохтонные гранитоиды тоналит-гранодиоритового формационного ряда, по данным Г. Б. Ферштатера и Н. С. Бородиной (1975), сформировавшимся из маловодной андезито-дацитовой магмы в гипо- и мезоабиссальной зонах глубинности. Преобладающими породами данного формационного типа являются плагиограниты и гранодиориты. Эталонным объектом данной формации является пластовский плутонический комплекс , в состав которого входят кроме Пластовского Коелгинский, Чернореченский, Каменский. Простирание массивов субмеридиональное, подчеркивающее структуру древнего основания. Все они испытали процессы бластокатаклаза и перекристаллизации с проявлением метасоматических процессов, выразившихся в площадной микроклинизации, альбитизации, мусковитизации, завершающих процессы метаморфизма и метасоматизма поздней коллизии, что подтверждается данными абсолютного возраста 387-320; 310-240 млн лет (калий-аргоновый метод). Сопоставляя эти данные с геологическими материалами, приходим к выводу, что массивы тоналит-гранодиоритового ряда образовались на границе девона и карбона, отчасти, возможно, в верхнем девоне. Более поздние датировки обусловлены наложением позднеколлизионных процессов, когда внедрялись массивы гранитной формации. С массивами тоналит-гранодиоритовой формации связано оруденение золото-сульфидно-кварцевого типа.
Борисовский магматический комплекс объединяет преимущественно автохтонные гранитоиды, слагающие крупные куполовидные структуры – Варламовскую, Борисовскую, Санарскую, Еремкинскую.
Борисовский массив представляет собой автохтонное, линзообразное тело мощностью до 2-3 км, залегающее в докембрийских гнейсах нижней толщи и сложенное порфиробластовыми гранитными мигматитами, в ряде мест прорванными более молодыми аллохтонными нормальными гранитами. В эндоконтактовых частях Борисовского массива преобладают гранитогнейсы, среди которых картируется богатый набор жильных гранитов, аплитов, пегматитов. Гранитные мигматиты в основном среднезернистые, с гнейсовой текстурой. Контактовая зона совершенно нечеткая и часто вообще теряется ввиду постепенного перехода от гнейсов нижней толщи к гранитным мигматитам.
Санарский магматический комплекс объединяет нормальные аллохтонные граниты гранитной формации, образующие отдельные изометричные тела в пределах Санарского гранитогнейсового мигматизированного купола, где занимают около 80% пространства. Граниты санарского комплекса в виде небольших изометричных тел встречаются среди гранитоидов Борисовского массива и занимают всего около 30 % площади.
Возраст нормальных гранитов санарского комплекса 310-240 млн лет соответствует завершающему этапу поздней коллизии и наложению гидротермально-метасоматических преобразований (Львов, 1965; Болтыров, 1973; Сначев, 1989).
Глава 3. Методика исследований
В ходе работы при сборе и аналитической обработке фактического материала были использованы различные методы полевых и лабораторных исследований минерального вещества.
3.1 Полевые исследования
В ходе преддипломной практики был отобран геологический материал для дальнейших аналитических лабораторных исследований. Привязки образцов проводились с помощью GPS-прибора Garminс точностью привязки 5-15 м.
3.2 Лабораторные исследования
Лабораторные исследования проводились на геологическом факультете ЮУрГУ в г. Миассе и в Институте минералогии УрО РАН. Были использованы следующие методы исследования :
- метод оптической микроскопии;
- рентгеноспектральный микроанализ;
- рентгенофазовый анализ;
3.2.1 Метод оптической микроскопии
Метод оптической микроскопии в отраженном и проходящем свете – применялся в целях диагностики, минералого-петрографического изучения, определения текстурно-структурных особенностей строения горных пород и минералов. Образцы пород изучались под бинокулярным микроскопом МБС – 9. Горные породы изучались в 20 шлифах на микроскопе для проходящего света ПОЛАМ Р-312 и микроскопе OLIMPUSBX 51 c цифровой камерой DP 12. Сделан ряд микрофотографий, характеризующих петрографические особенности пород.
3.2.2 Рентгеноспектральный микроанализ
Рентгеноспектральный метод применялся для исследования количественного состава кианитов в породах. Для этого использовался электронно-зондовый микроанализатор JEOL Superprobe 733.
3.2.3 Рентгенофазовый анализ
Рентгенофазовый анализ проводился для диагностики минералов (слюды) методом порошка на дифрактометре ДРОН-2,0 с CuKa-излучением.
Глава 4. Минералогическая и петрографическая характеристика кианитсодержащих пород Борисовских сопок
В Борисовских сопках различают первую сопку – северную, ближайшую к поселку Борисовка, с наиболее округленной вершиной, вторую – среднюю, к югу от р. Топкой и третью – южную, наиболее высокую со скалистой вершиной (Игумнов, 1935). Образцы кианитсодержащих пород были отобраны с северной и средней сопок (рис. 3).
Рис. 3. Топографическая карта района Борисовских сопок.
Масштаб 1:50 000 (лист №-41-62-А)
1 -первая сопка (обр. № Б1.4, Б1.5, Б-1, Б-2, Б-9),
2- вторая сопка (обр. № Б1.10, Б1.7, Б1.11, Б1.9, Б1.6, Б-5),
3 -третья сопка.
Рис. 4. Выход мусковит-кианитового сланца (вторая сопка, средняя).
Участок Борисовского месторождения сложен в основном кварцево-слюдяными и дистеновыми кварцево-слюдяными сланцами (рис. 4), которые непосредственно контактируют с гранитами. Среди этих сланцев встречаются глинисто-слюдяные сланцы (филлиты), а также кварциты. Вдоль западного контакта сланцев с гранитами, а также и частью среди кварцево-слюдяных сланцев наблюдаются метаморфизованные породы основного состава.
Из жильных образований на участке месторождения встречаются гранитные аплиты и пегматиты, а также жилы молочного кварца (Игумнов, 1935).
4.1 Разновидности кианитсодержащих пород Борисовских сопок
Кианитсодержащие породы Борисовских сопок по результатам петрографического изучения, по минеральному и особенностям химического составов разделяются на мусковит-кианитовые сланцы и кианитовые кварциты.
4.1.1 Минералого-петрографическая характеристика мусковит-кианитовых сланцев
Мусковит-кианитовые сланцы (обр. № Б1.11, Б1.10, Б1.7, Б1.6, Б-5, Б-1, Б1.5) – порода от серебристо-серого до красно-бурого цвета. Окраска обусловлена выделениями кианита серого цвета и мелкопластинчатого мусковита в гематитизированной основной ткани породы. Текстура породы сланцеватая, подчеркнутая ориентированным кристаллам кианита. Внешне структура породы порфиробластовая, обусловленная крупными кристаллами кианита серого цвета с синеватым оттенком размером до 0,7×3 см (обр. № Б1.10) (рис. 5).
Рис 5. Мусковит-кианитовый сланец. Текстура сланцеватая, структура порфиробластовая (обр. №Б 1.10).
Рис. 6. Развитие гематит-магнетитовых прослойков в мусковит-кианитовых сланцах (обр. № Б1.6).
Породы в целом содержат до 10% гематита, который развивается равномерно вплоть до образования магнетит-гематитовых прослоев черного цвета (обр. № Б1.6). Мощность слоев не выдержана и достигает 1,5 мм (рис. 6). Сланцы трещиноваты (обр. № Б-1). В сланцах макроскопически кианит наблюдается как в виде удлиненно-призматических кристаллов, так и в виде радиально-лучистых агрегатов (рис. 7).
Рис. 7. Радиально-лучистые агрегаты кианита в мусковит-кианитовых сланцах (обр. № Б-1).
Таблица 1
Количественно-минералогический состав мусковит-кианитовых сланцев.
Минерал | Содержание (в объем.%) | |
максимальное | минимальное | |
Кварц | 50 | 20 |
Кианит | 50 | 30 |
Мусковит | 15 | 1 |
Гематит | 10 | 5 |
Магнетит | 3-4 | |
Андалузит | 5 | |
Акцессорные минералы (рутил, монацит, циркон, ксенотим, апатит) | 3 | 1 |
Рис. 8. Порфиробласты кианита на фоне лепидогранобластовой структуры основной ткани сланца (шлиф № Б5, николи +) Ky -кианит, Q -кварц, Mus -мусковит
Рис. 9. Лепидогранобластовая структура основной ткани породы (шлиф № Б17, николи +) Ky -кианит, Q -кварц, Mus - мусковит
Микроскопически порода обладает порфиробластовой структурой (рис.8) благодаря крупным выделениям кианита, которые отчетливо видны на фоне лепидогранобластовой структуры основной ткани (рис. 9).
Кианит наблюдается в шлифе в виде бесцветных удлиненно-призматических, столбчатых, иногда уплощенных кристаллов, которые в сечениях дают прямоугольные разрезы. Удлинение кристаллов совпадает со сланцеватостью. Размеры зерен колеблются в широких пределах от 0,05×0,1 до 9×30 мм. Контуры большинства зерен неровные, отдельные зерна раздроблены. Отчетливо развиты две системы спайности: одна совершенная по (100) и повторяется чаще, чем вторая по (010). В зернах кианита наблюдаются включения кварца, размер которых достигает до 0,5 мм, включения рутила размером до 0,3 мм. Также имеются включения ксенотима, монацита и магнетита размером до 0,1 мм (шлиф № Б110) и тонких пластинок мусковита размером до 0,1 мм. Включения составляют от 5 до 25% и распределяются в большинстве случаев согласно удлинению зерен кианита. Границы между зернами кианита и кварца извилистые (рис. 8). Наблюдается прямое погасание кристаллов кианита в сечениях с четкой спайностью и косое – в сечениях с плохо проявленной спайностью. Удлинение положительное, минерал отрицательный.
С помощью электронно-зондового микроанализатора было проведено измерение химического состава кристалла кианита по профилю (пластинка № D1, D2) (табл. 2, 3).
Таблица 2
Химический состав кристаллов кианита в мусковит-кианитовых сланцах (мас.%).
№ | S i O2 | Al 2 O 3 | FeO | TiO 2 | Na 2 O | MgO | СаО | С r 2 O3 | MnO | V 2 O 5 | Σ |
Пластинка № D 1 | |||||||||||
1 | 37,443 | 63,498 | 0,061 | − | − | − | 0,059 | 0,101 | 0,134 | − | 101,297 |
2 | 37,055 | 62,745 | − | 0,199 | − | − | − | − | − | 0,157 | 100,156 |
3 | 35,596 | 63,721 | − | 0,188 | − | − | − | − | − | 0,137 | 99,642 |
Пластинка № D 2 | |||||||||||
4 | 37,649 | 61,805 | − | 0,188 | 0,418 | − | − | − | − | 0,181 | 100,240 |
5 | 36,569 | 63,449 | − | − | − | − | − | − | − | − | 100,018 |
6 | 32,84 | 64,641 | − | − | − | − | − | − | − | − | 97,482 |
7 | 36,052 | 64,8 | − | 0,186 | 1,09 | 0,134 | − | − | − | 0,156 | 102,418 |
Таблица 3
Формула кианита.
№ точки анализа | Формула |
В1 | Al1,963 Na0,022 Ti0, 004 Si1,015 O5 |
В2 | Al2,018 Si0,987 O5 |
В3 | Al2,117 Si0,912 O5 |
В4 | Al1,621 Na0,045 Mg0,004 Ti0,003 Si0,765 O5 |
Кварц в породе представлен ІІ генерациями. І – значительно преобладает в структуре основной ткани, образует бесцветные зерна в основном изометричной, округлой, иногда угловатой формы размером до 2 мм. В структуре породы размер зерен в основном 0,6-0,8 мм. ІІ генерация представлена мелкими (до 0,5 мм) зернами «лапчатой» формы, обычно с волнистым угасанием. Это более поздний (низкотемпературный) кварц, который развивается по трещинкам в кианите и пустотах андалузита.
Кварц в породе распределен равномерно. Крупные зерна кварца имеют от волнистого угасания до блокования (рис. 8). Гематит развивается по зернам кварца вплоть до образования каемок.
Мусковит в мусковит-кианитовых сланцах был определен под микроскопом, по данным рентгеноспектрального и рентгенофазового анализов.
Под микроскопом мусковитобразует тонкие пластинки размером до 0,5×1 мм, которые составляют основную ткань породы. Удлиненно-пластинчатые зерна располагаются согласно со сланцеватостью (рис. 9). Отдельные тонкие пластинки размером до 0,1 мм развиваются по кварцевым зернам, а также в виде включений присутствуют в кианите.
По данным рентгеноспектрального микроанализа(точка анализа В5, пластинка № D2) был установлен химический состав мусковита (в мас. %): SiO2 -43,802, Al2 O3 -33,236, FeO-8,965, K2 O-7,405, Na2 O-1,825, MgO-0,988, TiO2 -0,535, V2 O5 -0,247, СаО-0,094, Σ-97,097. Формула мусковита : K0,637 , Na0,239 Mg0,099 Fe0,506 Ti0,027 V0,011 Al2,641 Si2,953 O10 (OH)2
В шлифах достаточно отчетливо наблюдается замещение агрегатных чешуек биотита мусковитом и последующая хлоритизация того и другого минерала. Данные рентгенофазового анализа подтвердили присутствие биотита и хлорита. Рентгенофазовый анализ показал, что слюда относится к биотитовому ряду (рис. 10), что соответствует диагностическому отражению плоскости (060). Для мусковита данное значение 1,50 ангстрем.
Проба № Б5 | |||||||
№ | 2Q,° | d, ангстрем | I,% | № | 2Q,° | d, ангстрем | I,% |
1 | 8.852 | 9.989 | 35 | 10 | 33.072 | 2.709 | 2 |
2 | 12.299 | 7.197 | 1 | 11 | 35.157 | 2.553 | 2 |
3 | 17.821 | 4.977 | 24 | 12 | 35.7 | 2.515 | 2 |
4 | 20.834 | 4.263 | 6 | 13 | 36.148 | 2.485 | 4 |
5 | 24.777 | 3.593 | 2 | 14 | 39.444 | 2.284 | 3 |
6 | 26.59 | 3.352 | 40 | 15 | 40.284 | 2.239 | 1 |
7 | 26.893 | 3.315 | 100 | 16 | 45.634 | 1.988 | 45 |
8 | 27.946 | 3.193 | 1 | 17 | 50.093 | 1.821 | 3 |
9 | 29.957 | 2.983 | 2 | 18 | 59.91 | 1.544 | 3 |
Рис. 10. Порошкограмма и график слюды (биотит-мусковита) с примесью хлорита. Условия съемки: диапозон-4° - 65°, шаг съемки- 0.02°, экспозиция-50, с анодом Cu (1.54178) (аналитик Хворов П.В.).
Андалузит представлен бесцветными зернами призматического облика размером до 2×4 мм с шагреневой поверхностью (шлиф № Б17). Контуры зерен извилистые. В зернах присутствуют округлые включения кварца размером до 0,3 мм, которые составляют около 15% (рис.11).
Гематит представлен пластинками ярко-оранжевого цвета размером до 0,5 мм, которые развиваются неравномерно в породе. Местами в структуре основной ткани породы образуют крупные скопления с магнетитом.
Магнетит наблюдается в породе в виде пылеватого агрегата, а также в виде изометричных зерен размером до 1 мм. Образуют с пластинками гематита крупные скопления. В виде включений размером до 0,1 мм присутствует в кристаллах кианита.
Рутил в породе представлен длиннопризматическими кристаллами (рис. 12), также изометричными зернами коричневого цвета различных оттенков размером 0,01-0,1 мм. Отдельные зерна рутила непрозрачны, и только края просвечивают рыжим оттенком. Интерференционная окраска высшего порядка, окраска минерала не изменяется. Характерен высокий рельеф и большая сила двойного лучепреломления. Рутил находится как в виде включений в кристаллах кианита, так и в основной кварцевой массе.
Рис. 11. Зерно андалузита (шлиф № Б17, николи +)
Рис. 12. Бурые призматические кристаллы рутила ( Rt ) (шлиф № Б111, николи +)
Монацит наблюдается в виде табличек слабо окрашенных в бурый цвет (шлиф № Б111, Б17, Б110, Б16). В сечениях дают прямоугольные разрезы с пирамидальными с обоих концов ограничениями. Размер зерен достигает до 0,05-0,1 мм. Зерна монацита встречены в основной ткани породы.
Ксенотим образует длиннопризматические зерна желтоватого цвета с пирамидальными ограничениями с обоих концов, размер зерен достигает до 0,3-0,5 мм (шлиф № Б110, Б5, Б17, Б111). От монацита отличается прямым погасанием.
Апатит представлен бесцветными удлиненными, столбчатыми и игольчатыми кристаллами, нередко образует изометричные зерна (шлиф № Б5, Б15-1, Б111). Размер зерен апатита достигает до 0,05 мм. Минерал образует включения в зернах кварца.
Циркон наблюдается в породе в виде бесцветных или желтоватых короткостолбчатых кристаллов размером до 0,02 мм с пирамидальными ограничениями с обоих концов. Угасание прямое. Высокие цвета интерференции третьего и четвертого порядка. Циркон наблюдается в зернах кварца (шлиф № Б15-1, Б17).
Таким образом, по минеральному составу, характеру взаимоотношения минералов и по текстурно-структурным особенностям мусковит-кианитовые сланцы относятся к амфиболитовой стадии регионального метаморфизма, андалузит-кианит-ставролитовой субфации.
4.1.2 Минералого-петрографическая характеристика кианитовых кварцитов.
Кианитовые кварциты (обр. № Б1.9, Б-2, Б-9, Б1.4) порода бурого цвета, равномерная окраска обусловлена развитием гематита и магнетита по всей породе. Текстура породы массивная (рис 13). Структура породы от нематогранобластовой до порфиробластовой. В породе видна трещиноватость, которая не имеет какой-либо ориентировки. Особенность породы – кристаллы кианита размером до 0,8×2,5 см радиально лучистого строения (рис. 14), от серого до бурого цвета за счет развития гематита. В разрезе породы кианит серый с синеватым оттенком.
Рис. 13. Кианитовый кварцит с массивной текстурой (обр. № Б1.9)
Рис.14. Радиально-лучистые агрегаты кианита (обр. № Б1.4).
На поверхности породы отчетливо видны пустоты растворения от зерен магнетита в виде октаэдров и возможно сульфидов размером до 2 мм.
Таблица 4
Количественно-минералогический состав кианитовых кварцитов.
Минерал | Содержание (в объем.%) | |
максимальное | минимальное | |
Кварц | 65 | 45 |
Кианит | 40 | 25 |
Мусковит | 3 | 1 |
Гематит | 6 | 3 |
Магнетит | 7 | 3 |
Акцессорные минералы (рутил, монацит, циркон, ксенотим, апатит, касситерит) | 3 | 1 |
Микроскопически структура породы от нематогранобластовой до порфиробластовой с лепидогранобластовой основной тканью (рис. 15).
Кварц впороде представлен ІІ генерациями. І – образует зерна изометричной, округлой и угловатой формы размером до 1,5 мм и более мелкие кристаллы с пирамидальными ограничениями размером до 0,2 мм (шлифы № Б19-1, Б19-2) (рис.16).
Рис 15. Порфиробласты кианита ( Ky ) на фоне лепидогранобластовой структуры кианитового кварцита (шлиф № Б14, николи +) Q -кварц
Рис. 16. Радиально-лучистый агрегат кианита ( Ky ) (шлиф № Б19-1, николи ||) Q -кварц
Рис. 17. Развитие зерен магнетита ( Mgt ) по кварцевой ( Q ) основной массе (шлиф № Б92, николи +) Ky -кианит
Рис. 18. Акцессорные минералы в удлиненно-призматическом кристалле кианита (шлиф № Б91, николи ||)
В структуре породы преобладают зерна размером 0,6-0,7 мм. Данная генерация переполнена изометричными и округлыми зернами магнетита размером до 0,5 мм (шлифы № Б91, Б92) (рис. 17). ІІ генерация представлена зернами «лапчатой» формы размером до 0,6 мм. Эту генерацию кварца можно считать более поздней (низкотемпературной), наблюдается в основной кварцевой массе среди изометричных зерен.
Кварц в породе распределен в основном равномерно, некоторые зерна раздроблены. По границам зерен развивается гематит, образуя каемки.
Кианит наблюдается в виде бесцветных удлиненно-призматических кристаллов, иногда с голубоватым оттенком, а также в виде сноповидных радиально-лучистых агрегатов (рис. 16). Размеры зерен колеблются в широких пределах от 0,05×0,1 до 0,7×25 мм. Характерна резкая шагреневая поверхность. Зерна кианита не ориентированы, некоторые раздроблены. Угасание косое, на плоскости (100) угасание достигает 30°. Отчетливо развиты две системы спайности: одна совершенная по (100) и вторая по (010). В зернах кианита наблюдаются включения кварца, размер которых достигает до 0,2 мм. Также имеются включения рутила, ксенотима и монацита размером до 0,05 мм. Включения составляют около 5%.
Магнетит наблюдается в породе в виде непрозрачных октаэдров, изометричных зеренразмером до 1,5 мм и в виде пылеватого агрегата. Зерна магнетита образуют скопления в кварцевой основной массе породы, а также представлены в виде включений кварца (рис. 17).
Гематит представлен пластинками рыжего цвета размером до 0,3 мм, которые развиваются равномерно в породе, как по трещинам спайности кианита, так и по промежуткам между зернами кварца. Пластинки гематита в породе также образуют крупные скопления с магнетитом размером до 1,5 мм.
Мусковит образует тонкие пластинки размером до 0,1 мм в длину, которые развиваются по кварцевым зернам неравномерно в породе. В шлифах достаточно отчетливо наблюдается замещение агрегатных чешуек биотита мусковитом и последующая хлоритизация того и другого минерала. Данный биотит-хлоритовый агрегат заполняет отдельные промежутки между кианитовыми зернами.
Рутил представлен удлиненно-призматическими кристаллами, также изометричными зернами бурого цвета размером 0,01-0,15 мм. В породе наблюдаются коленчатые двойники рутила по граням дипирамиды (101), (011). Отдельные зерна рутила непрозрачны, и только края просвечивают рыжим оттенком. Интерференционная окраска высшего порядка, окраска минерала не изменяется. Характерен высокий рельеф и большая сила двойного лучепреломления. Рутил находится как в виде включений в кристаллах кианита, так и в основной кварцевой массе.
Циркон
наблюдается в породе в виде желтоватых короткостолбчатых кристаллов размером до 0,1 мм с пирамидальными ограничениями с
29-04-2015, 00:53