Исследование скважин в период освоения и опробования

пласта не охвачен. Но даже при уменьшении тепловой аномалии против перфорированного горизонта одномерный тепловой поток в подстилающих породах продолжает существовать. Поэтому иногда в этот период можно наблюдать дальнейшее смещение точки zr .

В связи с тем, что в скважине могут быть жидкости с различающимся адиабатическим коэффициентом (например, вода и нефть), в этот период может быть зарегистрирована аномалия типа «ступеньки», приуроченная к уровню раздела жидкостей.

Существенным моментом при исследовании скважины в этот период является то, что в конечном итоге все температурные аномалии (распределения температуры) по характеру и форме стремятся к соответствующим первоначальным, имеющим место в первый период состояния скважины. В этом заключается другая отличительная особенность, характеризующая переходный характер процессов в скважинах, осваиваемых компрессором: осуществление в скважине условий перехода от режима отбора к режиму первоначального состояния покоя.

Примечание. Рассмотренные выше особенности формирования температурных полей независимо от конкретного нефтяного района всегда проявляются при опробовании скважины компрессором. При этом следует учитывать лишь такие особенности месторождений, как различие естественных градиентов температуры, коллекторских свойств пластов, теплофизических свойств пластовых жидкостей и горных пород, различий в величинах давлений насыщения нефти газом, газового фактора. Наличие всякого рода осложнений: заколонных перетоков, негерметичности обсадной колонны, внутрипластовых перетоков и т.д. существенным образом может изменять описанные выше закономерности в образовании тепловых полей в том или ином участке ствола скважины.

Как только уровень жидкости достигает статического - забойное давление вновь становится равным пластовому (V период на рис.1б). Приток жидкости из пласта прекращается, и скважина «возвращается» в первоначальное гидродинамическое состояние покоя (состояние V на рис.1а).

Таким образом, при компрессорном освоении и опробовании в скважине наблюдается сочетание кратковременного пуска и последующей остановки, что приводит к возникновению сложных переходных процессов - происходит практически постоянное изменение забойного давления с изменением скорости и направления потоков жидкости.

Особенности методики исследований

Общие положения

1. Технология (методика) исследований скважин определяется тем арсеналом измерительных средств (методов), имеющихся на вооружении геофизических партий, конкретными задачами, которые необходимо решать в той или иной ситуации, а так же положением утверждающим получение максимума информации при минимуме средств и времени.

2. Обычно исследованию подлежат все скважины, давшие при освоении нефть с водой или воду при нефтенасыщенности пласта по электрокаротажу. Так же испытываются пласты для проверки геофизических характеристик при насыщенности пласта нефтью с водой и водонасыщенные.

3. При опробовании разведочных скважин исследованию подлежат и скважины, давшие при этом безводную нефть.

Опыт показывает, что для эффективного решения задач нефтепромысловой / геологии, возникающих при освоении и опробовании, необходим комплекс методов: гамма каротаж; локация муфт; термометрия; расходометрия (варианты СТД и МД); методы состава (влагометрия – ВГД, резистивимитрия – РИС и гамма-плотнометрия-ГГП); барометрия.

4. Для уменьшения дополнительных затрат средств и времени на исследования разработанные методики решения задач хорошо вписываются в существующую технологию компрессорного освоения скважины.

Выбор интервала исследований

1. Исследования скважин при их освоении или опробовании компрессором сводятся к спуску скважинной аппаратуры через насосно-компрессорные трубы, оборудованные на устье сальниковым устройством, а внизу воронкой, и регистрации интересующих устройством при спуске или подъеме прибора. Интервал исследований обычно выбирается их характера и назначения. При этом различают общие или поисковые и детальные исследования.

2. Общие исследования проводят, как правило, по стволу скважины от динамического (статического) уровня до продуктивных горизонтов. Регистрацию осуществляют в масштабе глубин 1:500. Детальные исследования осуществляются в интервалах продуктивных горизонтов до забоя и возможных заколонных перетоков, а также в интервалах температурных аномалий отмеченных при поисковых исследованиях. Производят детальные исследования в масштабе глубин 1:200.

3. Интервал детальных исследований, включая и неперфорированных
водоносные пласты потенциально возможные источники обводнения, должен быть свободен от насосно-компрессорных труб. При этом низ НКТ должен быть на 50 м выше таких пластов. Невыполнение этого условия, а так же перепуск НКТ ниже перфорированных интервалов, или же чрезмерная близость к ним, резко снижает эффективность исследований термометрии и других методов. Связано это с наличием
движения жидкости в трубах и за ними в процессе освоения и возникновением в этом интервале значительных температурных аномалий, которые могут маскировать процессы, происходящие в интересующих нас интервалах.

4. В общем случае глубина спуска НКТ рассчитывается и определяется типом компрессора и должна обеспечивать условие прорыва воздуха через НКТ и излив жидкости из скважины на поверхность.

Регламентирование геофизических исследований в скважине

1. Сложность переходных процессов происходящих в скважине и пласте при освоении предопределяет сложность решения задач геофизическими методами. Выполнение регламента измерений позволит наиболее полно использовать особенности переходных режимов работы для обеспечения информативности того или иного метода. При комплексном подходе основной упор в вопросах исследований и интерпретации в настоящем руководстве сдан на термометрию поскольку толкование информации получаемой расходометрией, методами состава и т.п. существенно не зависят от режима работы скважины (в смысле стационарного или нестационарного режима) и достаточно полно эти методы освещены в книге «Руководство по применению промыслово-геофизических методов для контроля за разработкой нефтяных месторождений», М., Недра, 1978. Ниже мы лишь упорядочим число и порядок проведения измерений в процессе освоения.

2. Термические исследования. При использовании комплекса геофизических методов для исследований во избежание нарушений температурного поля не следует непосредственно перед регистрацией термограмм спускать в интервал исследований другие приборы. В особенности это касается исследований проводимых в простаивающей до включения компрессора скважине.

Регистрацию термограмм обычно производят на спуске скважинного прибора. Рекомендуется при этом проведение по крайней мере одного замера при работе компрессора при подъеме прибора.

При затруднениях регистрации температурных кривых на спуске (большая кривизна скважины, неравномерное по скорости движение прибора, остановка прибора) допускается проведение исследований при подъеме термометра. По каждой кривой при этом на диаграмме дается информация о направлении движения зонда при регистрации.

Масштаб регистрации температуры при детальных исследованиях выбирается 0,02 °С/см или 0,05 °С/см, при поисковых исследованиях масштаб выбирается 0,1°С/см и регистрация осуществляется с дублированием вторым каналом гальванометра 1:5.

Первый замер термометром производится в скважине простаивающей в покое не менее 10-18 часов (в зависимости от диаметра скважины) после всякого рода работ связанных с ее промывкой. На практике это реализуется обычно так, если сегодня к производится промывка скважины, то на завтра заказываются геофизики. Контрольный (фоновый) замер температуры является первым из всех геофизических методов проводимых непосредственно перед освоением и опробованием и строго обязателен. Его рекомендуется по всему стволу скважины для получения общего представления о ее состоянии. Часто термограмма этого периода дает информацию для выбора интервалов детальных исследований как термометрии, так и других с методов.

Второй замер температуры производится при снижении уровня жидкости в межтрубное пространство, т.е. при работе компрессора в режиме нагнетания. Знание факта ухода жидкости из скважины в пласт необходимо для интерпретации последующих кривых, полученных в режиме отбора. Кроме того это явление, помимо выявления мест поглощения жидкости (нарушенные колонны, перфорированные пласты) имеет и самостоятельное значение: оно учитывается при определении оптимального времени дренирования скважины, необходимого для полного извлечения из пласта поглощенной в этот период жидкости.

В режиме отбора (притока) жидкости из пласта регистрируют по крайней мере три термограммы. Причем первый замер производят сразу после начала притока, второй - через 1-1,5 часа после первого и следующий через 2-3 часа. При комплексном исследовании [время между замерами может быть время) измерений привело в ряде случаев к массовому завышению скорости записи в ущерб качеству термограммы. 2. При термических исследованиях скважин мгновенная температурная картина в стволе скважины зарегистрирована быть не может: на разных глубинах она измеряется в различное время. Поэтому нестационарность распределения температуры в скважине приводит к искажению термограмм (эффект немгновенности регистрации или временной эффект записи). Исходя из этого, для исключения ложных аномалий на термограммах, скорость записи должна быть постоянной в процессе исследований и намного больше скорости потока (рис.7).

Рис. 7. Влияние скорости движения термометра на регистрируемую термограмму в начальной стадии нагнетания жидкости. 1 - в простаивающей скважине; 2 - в процессе нагнетания жидкости при различных скоростях движения термометра.

3. Завышение скорости движения термометра в случае осваеваемой скважины может приводить к чрезмерной затянутости аномалии дроссельного эффекта в зумпфе скважины из-за тепловой инерции аппаратуры (рис.8).

Рис. 8. К искажению профиля температуры тепловой инерцией аппаратуры.

4. В случае детальных исследований в качестве критерия для выбора скорости записи целесообразно принять величину затянутости ΔZr температурной аномалии в зумпфе. И принимая ΔZr < 0,3 м (по методическим соображениям) получаем для детальных исследований:

Учитывая, что в зумпфе, как правило, находится вода, поправку на увеличение постоянной времени термометра можно не вводить.

5. При исследовании простаивающих скважин в первый период (поисковые исследования), когда распределение температуры в скважине можно характеризовать средним температурным градиентом Гср исходя из чувствительности термометра Δт , допустимую скорость перемещения термометра в скважине можно определить как:

6. Скорость движения термометра не должна превышать указанных значений. При этом должно быть определено действительное значение постоянной времени термометра в скважине, т.к. паспортное значение т0 часто не соответствует действительному.

Примечание 1. Измерения другими методами ГИС, используемыми в комплексе с термометрией осуществляются так же в процессе освоения скважины. При этом: ГК и ЛМ можно регистрировать в простаивающей скважине; термокондуктивный расходомер и методы состава проводят до включения компрессора и при работе скважины в режиме отбора между температурными измерениями; для механического дебитомера возможна (при необходимости) повторная отработка скважины компрессором: барометрия проводится в простаивающей скважине (по стволу) и во всем цикле работы компрессора и скважины между другими геофизическими исследованиями на фиксированной глубине как функция Рзаб (t). Кроме того методы состава (ГГП или ВГД) проводят после отключения компрессора и разрядки (серия замеров) для прослеживания динамического уровня и НВР в стволе скважины.

Примечание 2. Технология и выбор методов исследований могут изменяться на скважине в зависимости от конкретных условий и от результатов предварительной интерпретации первых получаемых материалов ГИС. Принимать такого рода решения на скважине имеет право только начальник геофизической партии непосредственно осуществляющий решение поставленной задачи.




29-04-2015, 01:00

Страницы: 1 2
Разделы сайта