Совершенствование разработки трудноизвлекаемых запасов на основе комплексного анализа информации

участках;

3) изменение геометрии сеток добывающих и нагнетательных скважин – переход на квадратную пятиточечную систему;

4) приведение направления стволов эксплуатационных скважин в соответствие с ориентировкой осей напряжений и направлением фильтрационных токов методами ГТМ и МУН: ЗБС и ЗБГС, ГС скважин должны иметь субмеридиональное простирание (параллельно оси максимальных нормальных сжимающих напряжений).

5) проектный фонд скважин на неразбуренном участке Харампурского месторождения расставляется с учетом полученной зависимости безводной добычи нефти от пространственного расположения забоя скважины относительно разлома.

Количество нагнетательных и добывающих скважин для пятиточечной адаптивной сетки одинаковое (всего скважин в блоке – 38). Фильтрационно-емкостные свойства также одинаковы и приняты на основании обоснованной геологической модели. При прогнозных расчетах определилось, что падение давления в районе расположения непроницаемых экранов существенно выше, чем в удаленных от экранов зонах. По фактической динамике пластового, забойного давлений и коэффициента продуктивности по действующим скважинам горизонта Ю1 выявлена прямая зависимость коэффициента продуктивности от пластового давления (рисунок 2): со снижением пластового давления снижается коэффициент продуктивности. Такое заметное реагирование коэффициента продуктивности, рост газового фактора с первых лет разработки, переход работы скважин на режим растворенного газа, подтверждающийся наличием зон с повышенным газосодержанием, позволяет предположить, что давление насыщения нефти газом на месторождении было принято ниже действительного, реальное давление насыщения по месторождению выше, и, вероятно, составляет порядка 24,5-24,8 МПа.

Таким образом, в условиях разработки юрских отложений Харампурского месторождения в зонах, где пластовое давление близко к давлению насыщения, необходимо поддержание энергетического состояния залежи на первоначальном уровне.

Рисунок 2 - Динамика пластового, забойного давлений и коэффициента продуктивности по действующим скважинам (горизонт Ю1 )

Поэтому, добывающие скважины, расположенные вдоль непроницаемых экранов, предлагается перевести под нагнетание уже после 365 суток эксплуатации. Вводить в эксплуатацию систему поддержания пластового давления позже не рекомендуется, так как в последствии возможно образование техногенных трещин от нагнетательных скважин к добывающим и, в результате, резкий прорыв воды.

После эксплуатации блока в течение 1000 суток адаптивное расположение скважин дает преимущество. Для пятиточечной системы характерны следующие особенности: три нагнетательные скважины, расположенные в северо-восточной части блока, используются не рационально, то есть они не участвуют в формировании фронта вытеснения. Непроницаемый экран, расположенный в северо-восточной части месторождения, нарушает гидродинамическую связь между рядом нагнетательных и добывающих скважин, и, как следствие, возникает: аномально высокое пластовое давление в радиусе нагнетания данных скважин, падение пластового давления в добывающих скважинах, а нагнетательные скважины работают в "холостую". Нагнетательные скважины третьего ряда также работают не эффективно, то есть непроницаемый экран нарушает гидродинамическую связь между третьим рядом нагнетательных и третьим рядом добывающих скважин. В результате, невозможно сформировать равномерный фронт вытеснения, и в третьем ряду добывающих скважин образуется область низкого пластового давления. По распределению нефтенасыщенности после 2000 суток эксплуатации четко видно, что в районах непроницаемых экранов невозможно добиться равномерного фронта вытеснения, и контур нагнетания для скважин системы поддержания пластового давления усечен как раз в области непроницаемых экранов. Это позволило сделать вывод о неэффективности эксплуатации стандартной схемы размещения скважин в данных геологических условиях (рисунок 3а, 3б).

Рисунок 3 - Карты текущего пластового давления (а) и текущей нефтенасыщенности (б) по варианту 1 (стандартная пятиточечная система размещения скважин)

Совершенно противоположная ситуация наблюдается при адаптивной системе. Здесь характерно равномерное распределение пластового давления и текущей нефтенасыщенности практически по всему блоку, т.е. нагнетательные скважины, расположенные вдоль непроницаемых экранов, создают равномерный фронт вытеснения нефти водой (рисунок 4а, 4б).

Суммарный дебит нефти, полученный в ходе эксплуатации данного блока, для адаптивной сетки скважин выше, чем для стандартной на протяжении всего времени его эксплуатации. Накопленная добыча нефти для адаптивной сетки скважин составила 2945,7 тыс. тонн (текущий КИН=0,137), для стандартной сетки - 2699,9 тыс.тонн (текущий КИН=0,126). То есть при разработке блока адаптивной сеткой скважин вовлекается большее количество извлекаемых запасов, дополнительная добыча составит 245,8 тыс.тонн нефти за 2000 суток, или 8,5% от всей добычи нефти стандартной сеткой скважин. Нагнетательные скважины, расположенные вдоль разлома, позволяют добыть больший объем нефти за период отработки, что также было продемонстрировано ранее.

Таким образом, проведенные вычисления показали:

1. При моделировании месторождений со сложным геологическим строением, представленных непроницаемыми экранами, из-за отсутствия гидродинамической связи по всей протяженности пласта, необходимо разбивать объект разработки по гидродинамическим блокам.

2. Классический подход к разработке месторождений не эффективен. Более высокую эффективность показывает "не стандартная" – адаптивная система разработки, то есть сетку скважин необходимо размещать с учетом расположения непроницаемых экранов. В данной системе разработки предлагается расположить нагнетательные скважины непосредственно вдоль линии непроницаемых экранов. Гидродинамические потоки в этом случае будут отражаться от экранов, что будет способствовать выравниванию фронта нагнетания.

3. Исходя из результатов вычислительного эксперимента, можно сделать вывод, что при эксплуатации адаптивной сетки скважин происходит вовлечение в разработку большего числа остаточных запасов, чем при эксплуатации стандартной системой, для месторождений, структура которых обусловлена непроницаемыми экранами.

Рисунок 4 - Карты текущего пластового давления (а) и текущей нефтенасыщенности (б) по варианту 2 (адаптивная система размещения скважин)

Рисунок 5 - Динамика среднесуточного дебита для двух вариантов разработки.

В четвертом разделе проанализированы подходы к выбору технологии и методу воздействия на остаточные запасы путем ГТМ и МУН, осуществлено практическое внедрение разработанного комплексного подхода для адаптации разработки Харампурского и Фестивального месторождений. Сложность геологии объекта (наличие тектонических нарушений, разломно - блоковое строение, характерное для юрских отложений Пуровского района) является основным фактором, играющим первостепенную роль при выборе стратегии разработки и влияющим на ее эффективность в дальнейшем. Присутствие обширной сети разломов на месторождении приводит к необходимости введения "рамок", ограничивающих внедрение систем размещения проектных скважин. В частности, равномерные рядные системы с геометрически равномерным расположением сетки скважин в каждый выделенный сетью разломов блок залежи, обеспечивают различным количеством добывающих и нагнетательных скважин, что в свою очередь приводит к неравномерному их соотношению и невозможности поддержания проектного уровня компенсации в одном блоке, либо его превышению в другом блоке.

Дисбаланс и последующая потеря первоначальной энергетики юрских пластов приводит в дальнейшем к трудно восполнимым потерям углеводородного сырья. В частности, на примере газовых сеноманских залежей Западно-Таркосалинского и Ямбургского месторождений установлена связь абсолютно свободного дебита с расстоянием до тектонической зоны. Доказано, что степень воздействия тектонической зоны на продуктивность скважин для сеноманских отложений поддается количественной оценке: приразломная часть характеризуется резким увеличением продуктивности в 2-4 раза, в сравнении со скважинами, находящимися на расстоянии более 2 км от разлома.

В четвертом разделе выявлена степень влияния разломов осадочного чехла, связанных с оперяющими системами кулисных сбросов (взбросов) горизонтальных сдвигов фундамента, на эффективность работы скважин. Чем ближе забой скважины пласта Ю1 Харампурского месторождения расположен к разлому (1-1,5 км), тем выше фильтационно-емкостные характеристики (ФЕС) в данном районе и выше безводная добыча (от 72 до 40 тыс.т./скв). На расстоянии 1,7-2,2 км от разлома, безводная добыча скважин кратно ниже от 19,5 до 4,9 тыс.т./скв. Приразломная зона (1-1,5км) характеризуется повышенными ФЕС, более высокими значениями коэффициентов нефтенасыщенности, и, как следствие, лучшими параметрами эффективности эксплуатации скважин (безводная добыча нефти, средние и удельные дебиты нефти и жидкости). С расстояния 2,2 км и более - параметры работы скважин ухудшаются (рисунок 6).

На основе выявленной зависимости получено итоговое уравнение, дающее возможность прогнозирования расчетной продуктивности проектных скважин, расположенных вблизи разломов сдвигового типа:

Qбд(L)=11071e-3.6153 L , (1)

где: Qбд – безводная добыча нефти на 1 скважину, тыс.т/скв. L – расстояние забоя скважины до тектонического нарушения сдвигового типа, км

Рисунок 6 - Зависимость средней безводной добычи и проводимости от расстояния забоев скважин до разлома.

Таким образом, появляется возможность учета зависимости (1) при первоначальном проектировании системы разработки или, как в случае с Харампурским месторождением, оптимизации уже существующей системы разработки. Принимая во внимание полученные в ходе исследования результаты, при планировании ГТМ и МУН на месторождениях с трудноизвлекаемыми запасами возникает вопрос сопоставимости эффективности проведенных ГТМ на месторождениях с трудноизвлекаемыми запасами и ГТМ, проведенных на месторождениях с обычными условиями. Итак, на примере Барсуковского месторождения, характеризующегося благоприятными условиями разработки, изучена эффективность выполненных мероприятий, и проведено сравнение с результатами эффективности ГТМ на месторождении с трудноизвлекаемыми запасами. Выявлено, что:

1. На Харампурском месторождении средний удельный технологический эффект выше, чем на Барсуковском месторождении по всем основным ГТМ (гидравлический разрыв пласта и зарезка боковых стволов др.).

2. Эффективность строительства и эксплуатации боковых стволов на Харампурских залежах выше на 67 %, чем на Барсуковском месторождении.

Таким образом, определены элементы комплексного подхода к проектированию разработки месторождений, осложненных сдвиговой тектоникой, что в результате влияет на конечную нефтеотдачу. Для эффективной эксплуатации объектов со сложной морфологией, интенсивной дизъюнктивной нарушенностью и блоковым строением требуется научно обоснованная и надежная геологическая модель разломов, отражающая структуры горизонтального сдвига, на базе которой возможно построение реальных моделей фильтрационных потоков. Научно – методические результаты диссертационной работы использованы в проектных технологических документах "Дополнение к технологической схеме разработки Харампурского месторождения" и "Дополнение к технологической схеме разработки Фестивального месторождения", прошедших защиту на Центральной комиссии по разработке (ЦКР) и согласованных в Федеральном агентстве по недропользованию (Роснедра).

Основные результаты и выводы

1. Анализ разработки юрских залежей показал, что утвержденные ГКЗ РФ объемы извлекаемых запасов не достигаются по Северному куполу Харампурского месторождения на 4,4 %, по Южному куполу - на 35 %. Основной причиной, послужившей получению низких показателей разработки, явилось несоответствие выбранной геологической модели реальным условиям залегания пластов, и, соответственно, принятие нерациональной трехрядной системы заводнения.

2. На основе детальной геологической модели юрских залежей Харампурского месторождения выделены перспективные зоны продуктивности.

3. Проведено исследование влияния сдвиговой тектоники на эффективность эксплуатации юрских залежей. Доказано, что степень воздействия тектонической зоны на продуктивность скважин поддается количественной оценке: приразломная зона (1-1,5км) характеризуется лучшими параметрами эффективности эксплуатации скважин (безводная добыча нефти, средние и удельные дебиты нефти и жидкости). С расстояния 2,2 км и более - параметры работы скважин ухудшаются. На основе выявленной зависимости получено итоговое уравнение, дающее возможность прогнозирования расчетной продуктивности проектных скважин, расположенных вблизи разломов сдвигового типа:

4. С применением гидродинамического моделирования изучено влияние системы поддержания пластового давления на работу добывающих скважин с учетом непроницаемых экранов, обусловленных блоковым строением продуктивного горизонта. Обоснованы принципы адаптации сетки скважин к условиям сдвиговых дислокаций:

1) под адаптивной понимается сетка скважин, где нагнетательные скважины расположены непосредственно вдоль и по обе стороны непроницаемого экрана, с целью выравнивания профиля нагнетания, посредством отражения гидравлических потоков от непроницаемых экранов. Добывающие скважины размещаются в окрестности нагнетательных скважин на расстоянии, соответствующем принятой в проекте разработки плотности сетки скважин. Ориентировка рядов добывающих скважин – субмеридиональная (вдоль оси максимальных нормальных сжимающих напряжений);

2) частичное перепрофилирование нагнетательных и добывающих скважин – с учетом разломов на разбуренных участках;

3) изменение геометрии сеток добывающих и нагнетательных скважин – переход на квадратную пятиточечную систему;

4) приведение направления стволов эксплуатационных скважин в соответствие с ориентировкой осей напряжений и направлением фильтрационных токов методами ГТМ и МУН: ЗБС и ЗБГС, ГС скважин должны иметь субмеридиональное простирание (параллельно оси максимальных нормальных сжимающих напряжений);

5) проектный фонд скважин на неразбуренном участке Харампурского месторождения расставляется с учетом полученной зависимости безводной добычи нефти от пространственного расположения забоя скважины относительно разлома.

5. Результаты исследований реализованы в проектных документах на разработку Харампурского месторождения и месторождения-аналога Фестивального. Показано, что с внедрением избирательной (адаптивной) системы размещения скважин месторождения происходит вовлечение в разработку большего объема остаточных запасов, чем при эксплуатации стандартной сеткой. Расчетные КИН превышают ранее принятые значения на 2,3 % по Харампурскому и на 0,25 % по Фестивальному месторождениям. Дополнительная добыча нефти за счет адаптированных систем разработки, а также запланированных ГТМ по Харампурскому месторождению составит 11254,6 тыс. т. (7,01 %), по Фестивальному - 3952,6 тыс. т. (8,9 %).

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ ОПУБЛИКОВАНО В СЛЕДУЮЩИХ РАБОТАХ

1. Афонин Д.Г. Анализ метода гидравлического разрыва пласта (на примере Южно-Харампурского месторождения) // Проблемы развития нефтяной промышленности Западной Сибири: Сб. науч. тр. – Тюмень, 2004. – С. 100-120.

2. Афонин Д.Г. Эффективность закачки в условиях юрских отложений Северо-Харампурского нефтегазоконденсатного месторождения / Г.К. Белевич,

А.А. Телишев, С.С. Кузовлев // Сборник трудов НК "РОСНЕФТЬ". - 2005. – С. 56-60.

3. Афонин Д.Г. Выбор оптимальной системы разработки в условиях юрских отложений / Д.Г. Афонин, С.С. Кузовлев // VI Международный технологический симпозиум "Новые ресурсосберегающие технологии недропользования и повышения нефтегазоотдачи": Сб. науч. тр. – Москва, 2007. – С. 273-276

4. Афонин Д.Г. Эффективность ГТМ на месторождениях с трудноизвлекаемыми запасами // Там же.– С. 338-343.

5. Афонин Д.Г. Зависимость коэффициента продуктивности и скин-фактора от энергетического состояния залежи (горизонт Ю1) / Д.Г. Афонин, С.С. Кузовлев // VI Международный технологический симпозиум "Новые ресурсосберегающие технологии недропользования и повышения нефтегазоотдачи": Сб. науч.тр. – Москва, 2007. – С.343-346.

6. Афонин Д.Г. Определение основных зависимостей физико-химических свойств углеводородов как отправная точка решения многих проблем разработки / Д.Г. Афонин, С.С. Кузовлев // Там же. – С. 346-350

7. Афонин Д.Г. Обоснование степени влияния разломов на эффективность работы скважин // Бурение и нефть. – 2008. - № 9. - С. 22-25.




29-04-2015, 01:02

Страницы: 1 2
Разделы сайта