Управление состоянием массива

представлена в основном слабосцементированными конгломератами на песчано-глинистом цементе, рыхлыми песчаниками, которые лишь на востоке участка замещаются глинистыми разностями. Отличительной чертой конгломератов является их рыхлость, вследствие чего они водоносны.

Воды шахтного водоотлива, благодаря высокой минерализации (до 20 г/литр) и агрессивных свойств по отношению к бетону и железу, используются только для целей обогащения углей на обогатительных фабриках района. Для орошения и питьевых целей эти воды не пригодны.

Подземные воды угольных пластов характеризуются весьма различным солевым составом: от пресных до сильно минерализованных, агрессивных по отношению к бетону и железу. Содержание отдельных ионов следующие:

хлора от 125 до 15000 г/л.

сульфатов от 40 до 4800 г/л.

гидрокарбонатов от 70 до 1200мг/л.

при общей жёсткости от 2,8 до 107 мг.экв/л.

По химическому составу шахтные воды преимущественно хлоридно-сульфатно-натриевые, обладают повышенной минерализацией (от 3 до 11,2 г/л.), общей жёсткости до 55,4 мг.экв/л. и агрессивны по отношению к несульфатостойкими портландцементу и железу.(Средний приток воды 20 м^/час.)

Основной приток воды в шахту происходит из выработанного пространства смежных шахт.

Фактический водоприток в шахту составил 365 м3 /ч., из них 50 м3 /ч. по стволам, 315 м^ /ч. по горным выработкам. Ожидаемый приток воды в шахту составит: нормальный- 380 м2 /ч., максимальный с учётом возможного прорыва с погашенных выработок смежных шахт- 580 м2 /ч.

1.2.6 Горно-геологические условия

Горно-геологические условия разработки пластов сложные. Шахта относится к сверхкатегорным по газу и опасной по пыли. На шахте производится дегазация пластов вертикальными скважинами с поверхности и наклонными скважинами с вентиляционного штрека на спутники пластов. Ведение горных работ затрудняется слабой устойчивостью непосредственной кровли и почвы угольных пластов, а так же развитой мелко амплитудной нарушенностью. Маломощные прослои углистых аргиллитов и высокозольных углей, залегающие непосредственно на угольных пластах, образуют «ложную» кровлю, которая обрушается при выемки угля и засоряетего. Практикой эксплуатации принято оставление пачки угля в кровле для поддержания «ложной» кровли. Такая же пачка угля оставляется у почвы пласта, если она сложена аргиллитами, склонными к пучению.

Управление кровлей - полное обрушение.

Физико- механические свойства пород. Вмещающие угольные пласты породы карагандинской свиты разнообразны. Литологический состав пород от крупнозернистых песчаников до тонкоотмученных пород- алевролитов и аргиллитов. Основную кровлю и почву угольных пластов слагают, как правило песчаники, которые сменяются алевролитами.

Каменноугольные отложения на всей площади покрыты мезокайнозойскими образованиями, представленными юрскими осадочными породами, пестро цветными плотными глинами неогенами и четвертичными делювиальными песками.

Наибольшей прочностью обладают песчаники, наименьшей- аргиллиты; переслаивание песчано-глинистых пород и алевролиты имеют промежуточные значения.

Песчаники по гранулометрическому составу разделяются на тонко, мелко и среднезернистые. Прочность песчаников находится в пределах 400-900 кг/см3 . Переслаивание песчано-глинистых пород характеризуется прочностью 400-600 кг/см3 .

Алевролиты характеризуются однообразным минералогическим составом обломочного материала. Прочность алевролитов колеблется в широких пределах от 300 до 600 кг/см3 , реже менее 200 кг/см3 и более 600 кг/ см3 .

Непосредственно налегающие на пласты аргиллиты мощностью до 1 м., как правило, является неустойчивыми, они разбиты густой сетью трещин эндо- и экзокливажа, насыщены отпечатками флоры по наслоению, легко расслаиваются на тонкие плиты и прочность их редко превышает 150 кг/см . Остальные аргиллиты непосредственной кровли и почвы являются плотными, менее трещиноватыми и характеризуются прочностью от 150 до 300 кг/см .

Временное сопротивление растяжению пород уменьшается от песчаников (40-70 кг/см3 ) к аргиллитам (13-40 кг/см3 ). В таком же порядке изменяются плотности, как действительная, так и кажущаяся, от песчаников (соответственно 2,75 и 2,5 г/см3 ) к аргиллитам (2,68 и 2,45 г/см3 ).

Влажность и пористость пород возрастает от песчаников (соответственно 1,9-2,6 и 6,5-9%) к аргиллитам (2,6-4,9 и 10-13%).

Легкая размокаемость аргиллитов в почве угольных пластов обуславливается их склонность к пучению. Величина пучения в сухих выработках достигает 0,2 м. в год. Существенное влияние на интенсивность пучения оказывает влажность. При наличие водопритоков интенсивность пучения подошвы выработки возрастает в несколько раз.

Газоностность. По химическому составу газы угольных пластов принято подразделять на 4 группы:

1) азотно-углекислые или воздушнохимические, где содержание СО2 превышает 20%;

2) азотные или воздушные, содержание более 80%;

3) азотно-метановые или воздушнометаморфические, содержание метана менее 80%;

4) метановые или метаноморфические, содержащие более 80% метана.

Для большей части Карагандинского бассейна характерно наличие всех 4 зон.

Максимальная газоностность по группе пластов К12 - К6 достигает 20 м3 /т, К41 -15-20 м3 /т. Газоностность вмещающих пород и породных прослоев имеет значение газоностности равные 2-3 м3 /т.

Выбросоопасность угольных пластов. Пласт к 12 , следует относить к опасным по выбросам с глубины 400-420 м. от поверхности. Пласт К7- относится с глубины 600-650 м. от поверхности к угрожающим по выбросам. Пласты К3 , К6 , К13 , К14 и К18 - относятся к неопасным до глубины 500-550 м. от поверхности. Пласты К1 , К2 , К3 и К10 на глубине 600-800 м. относятся к угрожающим по выбросам.

Склонность углей к самовозгоранию определяется по содержанию фюзенита и подразделяются на 3 группы:

I группа - склонные к самовозгоранию при Р>23%

II группа - малосклонные к самовозгоранию при 15<Р<23%

III группа - несклонные к самовозгоранию при Р<15%

Пласты К2 , К7 , К10 , К12 , К13 , К14 , К18 относятся к I группе; К4 , К6 - ко II группе; К1 и К3 - к III группе.

Пожароопасность углей. Пожароопасность угольных пластов в пределах поля шахты зависит не только от их склонности к самовозгоранию, но от ряда других факторов и, в первую очередь, от мощности пласта и потерь угля, которые остаются в завале.

Пласт К1 - малоопасный.

Пласты К2 , К7 , К10 , К13 , К14 , К18 - среднеопасные.

Пласт К12 - опасный.

Степень взрывчатости угольной пыли. Пласты К1 , К2 , К10 , К13 , К14 относятся к маловзрывчатым и имеют норму осланцевания до 50%, пласт К12 относится к взрывчатой категории и имеет норму до 60%.

Температурный режим. При работе действующих шахт в Карагандинском бассейне температура шахтной атмосферы и горных пород, не создавала затруднений для эксплуатации. Температура горных пород у нижней технической границы составит 17,9 - 19 С.

Силикозоопасность. Все вмещающие породы Карагандинской свиты следует отнести к силикозоопасным.


Раздел II. Определение податливости ожидаемых нагрузок на крепь подготовительных и капитальных горных выработок

2.1 Расчет напряженно-деформированного состояния вязко-упруго-пластического массива горных пород вокруг протяженной горизонтальной выработки

Изучение вопросов распределения напряжений вокруг выработок является одной из основных и важнейших задач механики горных пород, так как они непосредственно связаны с прочностью (устойчивостью) горных выработок и с решением ряда практических инженерных задач в области их крепления.

При решении задач по определению напряжений вокруг выработок часто удобнее пользоваться полярными координатами. Если считать, что массив находится в сжатом состоянии и сжимающие напряжения считаются положительными, то определяющие компоненты напряжении вокруг выработки круглой формы будут иметь следующий вид [1,2]:

; ; (1)

,

где и ; - коэффициент бокового распора (давления), - радиус выработки в проходке, м; Н – глубина от поверхности; - угол между осью Х и направлением радиального напряжения; - средний вес пород покрывающей толщи; ,,- соответственно радиальные, тангенциальные и касательные напряжения.

= = 0,563

= 0,219 = 0,781

Если напряженное состояние ненарушенного массива гидростатическое, т.е. , то на контуре круглой выработки окружающее напряжение будет постоянным и равным:

; (2)

Данные расчетов заносим в таблицу 1

Таблица 1

r/r0

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

r0 2 /r2

1

0,69

0,51

0,39

0,3

0,25

0,2

0,173

0,147

0,127

0,111

r0 4 /r4

1

0,48

0,26

0,15

0,095

0,062

0,04

0,03

0,021

0,016

0,012

1-r0 2 /r2

0

0,31

0,49

0,61

0,7

0,75

0,8

0,827

0,853

0,873

0,889

1+r0 2 /r2

2

1,69

1,51

1,39

1,3

1,25

1,2

1,173

1,15

1,13

1,11

0

6,12

9,151

10,852

11,898

12,586

13,063

13,407

13,664

13,861

14,016

9,739

11,271

12,854

14,147

15,154

15,934

16,544

17,026

17,413

17,726

17,983

0

3,104

4,084

4,360

4,387

4,324

4,141

4,053

3,974

3,974

3,905

Смещения контура выработки (при ):

, (4)

где Е – модуль упругости; - коэффициент Пуассона.

Данные расчетов заносим в таблицу 2

Таблица 2

, 0

0

15

30

45

60

75

90

, м

0,005

0,0055

0,0069

0,0088

0,0108

0,0122

0,0127

В массиве в окрестности выработки возникает область деформации растяжения :

, (6)

Данные расчетов заносим в таблицу 3

Таблица 3

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

2,6

2,8

3,0

0

6,12

9,151

10,852

11,898

12,586

13,063

13,407

13,664

13,861

14,016

9,739

11,271

12,854

14,147

15,154

15,934

16,544

17,026

17,413

17,726

17,983

3-

-9,739

7,088

14,598

18,411

20,542

21,825

22,646

23,196

23,580

23,857

24,063

-0,00064

0,00003

0,00022

0,00034

0,00039

0,00042

0,00044

0,00044

0,00045

0,00045

0,00045


Координату границы зоны растяжения получаем из условия . Подставляя значения напряжений, получаем окончательно следующее решение уравнения (6):

при , :

, (7)

где ; ; ;

при и :

, (8)

Конфигурацию зоны деформации растяжения можно установить, определяя координаты для лучей 0,300 ,600 и 900 .

Таблица 4

Ѳ,град

00

300

600

900

а

0,6570

0,3285

-0,3285

-0,6570

b

0,2204

0,5007

-1,0612

-1,3416

с

-0,003

-0,1092

-0,3282

-0,4377

rхх

8,171

6,567

4,758

4,386

Смещения контура выработки со временем определяются с помощью метода переменных модулей, сущность которого заключается в замене упругих констант в решении упругой задачи переменными модулями. При наследственной ползучести с ядром типа Абеля переменные модули имеют вид:

, , (9)


= 0,31*104 МПа;

= 0,466;

= 1,9

Вертикальные смещения кровли выработки:

(10)

= 0,012429 м.

2.4. Определение податливости крепи

Податливость крепи выработки должна выбираться с учетом возможных смещений контура, которые развиваются вследствие деформации ползучести и разрыхления пород.

В последнем случае вследствие разрыхления пород происходят дополнительные смещения контура из-за увеличения объема при растрескивании. Величина смещения определяется из выражения:

, (11)

где -коэффициент разрыхления; - радиус пластичности.


, (12)

где ,

- предел прочности на одноосное сжатие; - угол внутреннего трения породы; - сцепление.

= = 1,37;

= = 5,79;

= 3,3 м;

= 0,011 м,

Уменьшение высоты выработки вследствие ползучести определяется выражением (10), а вследствие разрыхления - (11).

Таким образом податливость крепи:

, (13)

2,5 м.

2.3 Расчет нагрузки на крепь

В результате систематизации данных о взаимодействии крепи и массива горных пород разработаны следующие основные расчетные схемы режимов ее работы:

1. Режим заданной нагрузки;

2. Режим заданной деформации;

3. Режим взаимовлияющей деформации;

4. Комбинированный режим.

Тот или иной режим работы крепи обусловлен конкретными горнотехническими условиями. Если крепь работает в режиме заданной нагрузки, то давление на нее определяется весом отделившихся от массива объемов породы.

Горные породы в окрестности выработки могут быть разрушены в пределах зоны деформации растяжения или пластичности.

Среднее значение координаты границы зоны растяжения:

, (14)

где

29-04-2015, 00:30


Страницы: 1 2 3 4
Разделы сайта