Проект проведения подземной горной выработки

взрывом предыдущих зарядов) 0,5м.

У почвы выработки расстояние между шпурами может быть несколько уменьшено, а у кровли, соответственно, несколько увеличено.

Расстояние от контура выработки до устьев оконтуривающих шпуров принимается равным 15ч20 см.

Расчёт взрывной сети

Для производства взрывных работ принимаем электрический способ взрывания с последовательным соединением электродетонаторов с семью степенями замедления. Принятый способ взрывания максимально безопасен для взрывного персонала, а принятая схема взрывания не только проста, но и надёжна т.к. легко позволяет проверить правильность коммутации взрывной сети. В качестве средств взрывания будем применять электродетонаторы марки ЭД-8-Э с жёстким креплением мостика, нормальной мощности, предназначенные для мгновенного взрывания и электродетонаторы короткозамедленного действия марки ЭДКЗ

Шпуры в комплекте взрываются в определённой последовательности: первый ряд врубов; второй ряд врубов; отбойные; оконтуривающие справа; оконтуривающие слева; оконтуривающие по кровле выработки и нижние оконтуривающие.

Число ступеней замедления оптимальное – 7.

Техническая характеристика электродетонаторов

Марка ЭД

ЭД-8-Э

ЭДКЗ

Безопасный ток, А

0,18

0,18

Сопротивление, Ом.

3,5

3,5

Наружный диаметр, мм

7,2

7,7

Длина, мм

60

72

Длина провода ЭД, м

2,0

2,0

Число серий

-

6

Интервал, мс.

0

25;50;75;100;150;250.

В качестве источника тока для инициирования электродетонатора применяем конденсаторный взрывной прибор ПИВ-100м , который предназначен для инициирования до 100 последовательно соединённых и одиночных электродетонаторов с нихромовым мостиком накаливания нормальной чувствительности при внешнем сопротивлении взрывной сети до 320 Ом. ПИВ-100м имеет омметр и пакетный переключатель

Техническая характеристика ПИВ-100м [4]

Показатель

Ед изм

Значение

Исполнение

РВ

Источник питания

сухие элементы

Напряжение на конденсаторе

В

600

Максимальное сопротивление взрывной сети

Ом

320

Емкость конденсатора-накопителя

мкФ

9

Время заряжения конденсатора

мс

не более 8

Размеры

мм

195х126х95

Масса

кг

2,7

Расчет электровзрывной сети

Независимо от способа соединения электродетонаторов в цепь (последовательное, параллельное и параллельно-последовательное) для безотказного взрывания необходимо, чтобы в каждый из них поступал ток величиной не менее гарантийного, значение которого приводятся в характеристике электродетонатора. Сечение жилы магистральных проводов должно быть не менее 0,75мм2 , а участковых и соединительных проводов–0,5мм2 .

В качестве соединительных проводов применяем провод ВМП. В качестве магистральных проводов применяем провод марки ВМВЖ:

Параметр

ВМП

ВМВЖ

Диаметр жил

0,8

1,2

Площадь поперечного сечения, мм2

0,5

1,13

Число проволочек: - медных, стальных

1

1

Сопротивление, Ом/м

0,04

0,14

Материал изоляции жилы

полиэтилен

полиэтилен

Наружный диаметр провода, мм

2,3

2,7

Длину магистрального провода (с учётом запаса на катушке) принимаем равной 0,15км. Сопротивление магистрального провода мы можем найти по следующей формуле:

Длину соединительных проводов принимаем равной 20метров. Сопротивление соединительного провода мы можем найти по следующей формуле:

Принимая последовательное соединение 46 электродетонаторов, определим ток, проходящий через каждый электродетонатор:

, где

- число электродетонаторов;

- сопротивление одного электродетонатора;

- напряжение источника тока.

По правилам безопасности, при последовательном соединении до 300 электродетонаторов, гарантийный ток должен быть не менее 1,3 А.

Условие безотказности взрыва: , где

- сопротивление последовательно соединённой взрывной сети, Ом;

- сопротивление взрывного прибора.

, где

- число электродетонаторов;

- сопротивление одного электродетонатора;

- длина соединительных проводов;

- длина магистральных проводов;

, - сопротивление проводов соединительных

и магистральных соответственно.

следовательно, условие безотказности взрыва соблюдено.

Из расчёта видно, что принятая схема электровзрывания удовлетворяет всем требованиям безотказности взрывания.

Основные показатели буровзрывных работ

1. Подвигание забоя за цикл: Lух = 2,1 м

2. Выход породы за цикл: V = LухSвч V = 2,1*8,5 = 17,85 м3.

3. Наименование ВВ– Nobelit 216Z; наименование СВ – ЭД-8Э, ЭДКЗ

4. Способ инициирования – прямой

5. Способ взрывания – электрический

6. Способ заряжания – ручной

7. Наименование вруба – вертикальный двойной клиновой

8. Материал забойки – глина

9. Радиус опасной зоны – 150м

10. Диаметр шпуров – 40 мм

11. Глубина шпуров: врубовых 2,0м; 3,0м;

12. отбойных 2,45 м; оконтуривающих 2,45м.

13. КИШ – 0,85

14. Количество шпурометров на цикл 114,2пм

15. Количество шпурометров на 1п.м. – 54,4м/м.

16. Количество шпурометров на 1м3 – 6,4м/м3.

17. Число шпуров на цикл – 46 шт.

18. Расход ВВ на цикл: QВВ = 86,4кг.

19. Расход ВВ на 1м3 – 4,84кг/м3.

20. Расход ЭД на цикл – 46шт

21. Расход соединительных проводов на цикл – 20м

22. Время проветривания – 0,5ч

Параметры БВР

Номер шпуров

Наименование шпуров

Угол наклона, град

Глубина шпура, м

Масса шпурового заряда, кг

Длина заряда, м

Очередность взрывания

Тип ЭД, интервал замедления, мс

1-4

Врубовые

80

2,0

1,8

1,5

1

ЭД-8-Э

5-10

Врубовые

80

3,0

2,4

2,0

2

ЭДКЗ-25

11-18

Отбойные

90

2,45

1,8

1,5

3

ЭДКЗ-50

19-24

Оконтур

85

2,45

1,8

1,5

4

ЭДКЗ-75

33-38

Оконтур

85

2,45

1,8

1,5

5

ЭДКЗ-100

25-32

Оконтур

85

2,45

1,8

1,5

6

ЭДКЗ-125

39-46

Оконтур

85

2,45

1,8

1,5

7

ЭДКЗ-150

Разработка паспорта проветривания

Выбор схемы проветривания:

Основной задачей проветривания тупиковых выработок является поддерживание установленных Правилами безопасности параметров рудничной атмосферы. Исходя из горнотехнических и горно-геологических условий данной выработки, наиболее приемлемым будет является комбинированный способ проветривания (выработка не опасна по газу и пыли). Комбинированный способ проветривания рекомендуется Правилами безопасности как основной. Его используют в выработках протяжённостью более 300м. Комбинированный способ проветривания тупиковых выработок представляет собой сочетание нагнетательного и всасывающего способов. Он позволяет до максимума сократить время удаления газов и особенно целесообразен для проветривания протяжённых выработок большой площадью сечения, а также при скоростных проходках.

Основным недостатком этого способа в обычных условиях является наличие двух вентиляторных установок. Необходимость регулирования режимов их работы и увеличение эксплуатационных затрат.

Учитывая то, что данная горная выработка имеет большую протяжённость 380м, площадь поперечного сечения – 8,5м2 , и неопасна по газу и пыли, принимаем комбинированный способ проветривания. При его использовании по всей длине трубопровода прокладывается только всасывающий трубопровод, а в призабойной части выработки – трубопровод, по которому в рабочую зону подается воздух из незагрязненной части выработки.

Нагнетательный вентилятор устанавливаемый в выработке должен располагаться от забоя на расстоянии не менее длины зоны отброса газов L з.о . .

Найдём длину зоны отброса газов по формуле:

, Принимаем L з.о. = 110м

Где - количество одновременно взрываемого ВВ, кг (86,4кг);

- площадь поперечного сечения выработки в свету, м2 (8,3м2 );

- подвигание забоя за один цикл, м (2,1м);

- плотность горной породы, кг/м3 (2650 кг/м3 ).

По Правилам безопасности отставание трубопровода от забоя допускается в горизонтальной выработке не более чем на 10м. Исходя из этого, длина нагнетательного трубопровода будет равна. L Т = 110 – 10 = 100м

Принимаем длину всасывающего трубопровода 380м, так как всасывающий трубопровод устанавливается на расстоянии не менее 18ч20 м от забоя, а всасывающий вентилятор должен располагаться не ближе чем в 20м от устья штрека во избежание подсасывания загрязнённого воздуха.

Расчёт подачи свежего воздуха для разжижения вредных газов от взрывных работ при комбинированном способе проветривания:

Количество воздуха необходимого для проветривания (подаваемое в забой), исходя из разбавления газов после взрывных работ по обводненным породам, по формуле В.И. Воронина для нагнетательного вентилятора:

м3 /мин

- длина проветриваемой выработки;

- фактическая величина газовости ВВ, т.е. объём условной окиси углерода, выделяемой при взрыве 1кг ВВ, л/кг (40 л/кг);

- продолжительность проветривания, мин

А - масса ВВ, взрываемого в одном цикле проходки;

- площадь поперечного сечения выработки в свету.

Количество воздуха, удаляемого из забоя всасывающим вентилятором при отсутствие перемычки на границе зоны отброса газов:

QЗ.ВС = 1,3* QЗ = 1,3*220,6 = 286,8 м3 /мин = 4,78м3 /сек

Проверяем полученное значение на допустимую скорость движения воздушной струи по выработке: Vd = QЗ.ВС /S = 4,78/8,3 = 0,5м/сек

Для эффективного выноса пыли из проектируемой выработки, скорость движения воздушной струи по штреку лежит в допустимых пределах

Определим количество воздуха исходя из минимальной скорости движения воздуха.

Количество воздуха по числу людей одновременно работающих в забое.

Если в выработке не ведутся работы, связанные с пылеобразованием и отсутствуют другие вредные вещества, подача воздуха должна составлять не менее 6 м3 /мин на каждого человека, считая по наибольшему числу людей в выработке:


,

- количество людей в забое.

Таким образом, для дальнейших расчётов принимаем количество воздуха на забой, исходя из разбавления газов после взрывных работ

Количество воздуха, удаляемого из забоя всасывающим вентилятором:

Выбор типа и диаметра вентиляционного трубопровода.

Тип вентиляционных труб должен соответствовать площади поперечного сечения и длине выработки. Диаметр вентиляционных труб выбирается из расчёта, чтобы скорость движения воздушной струи по трубопроводу не превышала 20м/с. Для нагнетательного вентилятора принимаем текстовинитовые гибкие вентиляционные трубы. Их главное достоинство – небольшая масса и невысокое аэродинамическое сопротивление.

Принимаем для нагнетательного вентилятора трубы из прорезиненной ткани (тип МУ) диаметром 500мм. У гибкого трубопровода в один из швов вмонтированы специальные крючки, с помощью которых он подвешивается к анкерной крепи

Скорость движения воздуха по трубопроводам удовлетворяет требованиям безопасности

Техническая характеристика гибких труб

Диаметр, м

0,5

Тип

МУ

Тканевая основа

Чефер

Покрытие двустороннее

негорючей резиной

Масса 1 м, кг

1,6

Длина, м

20

Коэффициент аэродинамического сопротивления, Нс24

0,0030

Для стыковки гибких труб друг с другом в их концы вмонтированы стальные разрезные пружинящие кольца. Для соединения соседних звеньев пружинное кольцо одного звена сжимают и вводят внутрь другого. При включении вентилятора стык самоуплотняется.

Для всасывающего вентилятора принимаем металлические вентиляционные трубы. Учитывая длину всасывающего трубопровода, для приведения аэродинамического сопротивления в оптимальный предел значений принимаем диаметр всасывающего трубопровода равным 0,6м.

Скорость движения воздуха по трубопроводам удовлетворяет требованиям безопасности

Расстояние от конца всасывающего трубопровода принимаем:

Техническая характеристика металлических труб

Диаметр, м

0,6

Материал

металл

Длина звена, м

4

Масса 1 м трубы, кг

35,7

Коэффициент аэродинамического сопротивления, Н*с24

0,0030

Расчёт аэродинамических параметров трубопроводов

Проветривание проектируемой горной выработки при её проведении осуществляется с помощью вентиляторов местного проветривания.

Аэродинамическими параметрами трубопровода являются аэродинамическое сопротивление, воздухопроницаемость и депрессия. По трубам воздух движется за счет разности давлений у их концов, которая затрачивается на преодоление сопротивлений, оказываемых ими. Аэродинамическое сопротивление трубопровода при любой форме его сечения определяется по формуле:

где

- коэффициент аэродинамического сопротивления,;

- длина трубопровода, м; - диаметр трубопровода, м.

Найдём аэродинамическое сопротивление трубопровода:

- для всасывающего вентилятора:

H*c22

где - коэффициент аэродинамического сопротивления;

- диаметр вентиляционной трубы для всасывающего вентилятора.

- для нагнетательного вентилятора:

H*c22

- коэффициент аэродинамического сопротивления;

- диаметр вентиляционной трубы для нагнетательного вентилятора.

Найдём воздухопроницаемость трубопроводов:

- коэффициент подсосов для всасывающего трубопровода:

- коэффициент, характеризующий плотность соединения звеньев трубопровода (при хорошем качестве сборки).

- длина одной трубы, м;

LТ =380м- длина всасывающего трубопровода, м;

- диаметр труб, м;

R1 =95 - аэродинамическое сопротивление всасывающего трубопровода;

- коэффициент утечек для нагнетательного трубопровода 1,08

Депрессия вентиляционных трубопроводов:

Общая депрессия, которую должен преодолеть вентилятор:


где

- статическая депрессия, Па;

- депрессия за счёт местных сопротивлений (уменьшение диаметра, повороты трубопровода), Па;

- динамическая депрессия, Па.

Под депрессией вентиляционного трубопровода понимаются потери напора.

Статическая депрессия трубопровода (статистический напор вентиляторов):

, где

- коэффициент воздухопроницаемости трубопровода;

- необходимая подача свежего воздуха, м3 /с.

- аэродинамическое сопротивление трубопровода.

Депрессия вентилятора, необходимая для преодоления


29-04-2015, 00:53


Страницы: 1 2 3 4 5
Разделы сайта