Упругие колебания измеряют с помощью двух пьезоэлектрических сейсмоприемников, расположенных по одной линии на расстояниях 0,5 - 2 м друг от друга и от излучателя.
Между излучателем и ближайшим приемником устанавливается звукоизолятор, например, из резины, препятствующий передаче упругих колебаний по зонду. Все перечисленные приборы вместе с электронным усилителем принятых колебаний размещаются в скважинном снаряде акустического каротажа. Остальная аппаратура располагается в каротажной станции.
Акустический каротаж выполняется как в необсаженных скважинах, заполненных жидкостью, так и в обсаженных скважинах. Радиус исследования пород от оси скважины не превышает 0,5 - 1 м.
Рис. 18. Схема аппаратуры акустического каротажа:
а - скважинный снаряд; б - кабель; в - наземная аппаратура; 1 - излучатель; 2 - генератор акустических колебаний; 3 - акустический изолятор; 4 - приемники; 5 - электронный усилитель; 6 - блок-баланс; 7 - усилитель; 8 - регистратор; 9 - блок питания
Наиболее простой способ акустических исследований - каротаж скорости, когда автоматически регистрируется кривая изменения времени пробега прямой или головной волны между двумя приемниками. Поскольку расстояние между приемниками постоянно, то кривая времени является фактически обратным графиком изменения скорости. При каротаже по затуханию измеряется амплитуда упругой волны и ослабление сигнала между двумя приемниками.
Скорость распространения упругих волн зависит от упругих модулей пород, их литологического состава, плотности и пористости, а величина затухания - от характера заполнителя пор, текстуры и структуры породы (рис. 19). На акустических диаграммах высокими значениями скоростей распространения упругих волн выделяются плотные породы - магматические, метаморфические, скальные, осадочные. В рыхлых песках и песчаниках скорость тем ниже, чем больше пористость. Наибольшее затухание (наименьшая амплитуда сигнала) наблюдается в породах, заполненных газом, меньше затухание в породах нефтенасыщенных, еще меньше - у водонасыщенных.
Рис. 19. Общий вид диаграммы скорости (а) и амплитуды (б) при акустическом каротаже: 1 - породы средней пористости, сухие; 2 - породы средней пористости, влажные; 3 - породы высокой пористости; 4 - породы низкой пористости, плотные
Акустический метод применяется для расчленения разрезов скважин по плотности, пористости, коллекторным свойствам, а также для выявления границ газ - нефть, нефть - вода и определения состава насыщающего породы флюида. Кроме того, по данным этого метода можно судить о техническом состоянии скважин и, в частности, о качестве цементации обсадных колонн.
Оценка качества .
В незацементированной колонне отношение амплитуд А1/А2 должно находится в пределах 1-1,1. Отклонение от этого соотношения свидетельствует о неидентичности одноименных элементов зонда.
Интервальное время в свободной незацементированной колонне должно составлять
183 ±5 мкс/м.
Погрешность измерений оценивают по результатам повторных замеров. При неизменных геолого-технических условиях разность показаний при первом и повторном замерах для каналов dТ и w не должно превышать удвоенной предельной погрешности аппаратуры, указываемой в ТО на нее (например для СПАК-6 dТ- 3%, w - 4 дб ).
Пористость полученная по данным АК должна соответствовать данным, полученным другими методами (ННКт, ГГКп). Проконтролировать изменение dТ с глубиной можно по палетке (см.рис.20).
Рис.20. Палетка акустического каротажа
Основные методологические требования к диаграммам АК:
- диаграммы должны быть высокого качества;
- параметры регистрации диаграмм АК (скорость записи, стабильность каналов) должны быть в соответствии со свойствами разреза и обеспечивать качество по всему диапазону изменений измеряемых параметров;
- кинематические параметры (Т1+Т2+∆T) должны регистрироваться одновременно, также как и динамические (A1+A2+lgA1/A2).
- Во всех выявленных или уже известных перспективных интервалах параллельно записи АК в масштабе глубин 1:500 проводятся записи тех же параметров в масштабе глубин 1:200.
Акустический каротаж реализован на аппаратуре СПАК-6.
СПАК-6.
Назначение.
Аппаратура акустического каротажа СПАК-6 предназначена для измерения и регистрации кинематических и динамических характеристик упругих волн в нефтяных и газовых скважинах.
Данные по аппаратуре.
Аппаратура обеспечивает исследование скважин диаметром от 140 до 400 мм с температурой до 115° С, с гидростатическим давлением до 100 МПа, в водной промывочной жидкости.
Аппаратура эксплуатируется с трехжильным геофизическим кабелем типа КГ3-67-180 длиной до 5500м.
Формула зонда И2 0,4 И1 1,2 П. Схема прибора изображена на рис.16.
Частота излучаемых колебаний - 25 кГц.
Передача информационного сигнала на наземный измерительный пульт осуществляется по первой и второй жилам кабеля. Передача напряжения частоты 400 Гц для питания скважинного прибора осуществляется по средней точке цепи, образованной первой и второй жилами кабеля, согласующим трансформатором скважинного прибора и броней кабеля. По третьей жиле и броне кабеля осуществляется передача в скважинный прибор пусковых импульсов и постоянного напряжения для управления переключателем усиления, а также передача синхроимпульсов скважинного прибора.
Диапазон измерений интервального времени Т от 140 до 600 мкс/м. Диапазон измерений декремента затухания не менее 30 дБ/м.
Сопротивление первой и сопротивление второй жилы кабеля по отношению к оплетке кабеля должны быть равны между собой и примерно соответствовать сопротивлению одной жилы на данной длине кабеля. Сопротивление первой жилы кабеля по отношению ко второй жиле должно быть равно сопротивлению двух жил кабеля. Сопротивление третьей жилы кабеля по отношению к корпусу должно быть порядка 3,5 кОм.
Габаритные размеры:
- длина - не более 3527 мм;
- диаметр без центраторов - не более 90,3 мм
- диаметр с центраторами в свободном состоянии - не более 500 мм;
- диаметр с центраторами при предельной деформации полозьев - не более 126 мм.
Масса без центраторов - 75 кг.
11. Инклинометрия
Измерение угла наклона ствола скважины и азимута наклона (инклинометрия) относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в открытом стволе, одновременно со стандартным каротажем и в интервалах стандартного каротажа.
По ряду геологических, технологических причин проектируемые вертикальные и наклонно направленные скважины отклоняются от намеченного проектом направления. В искривленных скважинах обычно отмечаются следующие закономерности:
а) при очень пологом залегании пластов (угол падения до 8о ) не наблюдается каких-либо преимущественных направлений искривления;
б) при углах падения пластов в пределах 8-45о преобладает направление отклонения от вертикали вверх по восстанию пластов; ствол скважины стремиться занять положение, перпендикулярное к плоскости напластования; векторы смещения забоев направлены в области сводов положительных структур;
в) при углах падения пластов более 60о преобладают направления отклонения вниз по падению пластов; ось скважины стремиться занять положение, параллельное плоскостям напластования.
Положение оси скважины в пространстве на какой-либо глубине определяет зенитный угол δ - угол между вертикалью и касательной к оси скважины в данной точке и дирекционный угол α - угол, отсчитываемый по ходу часовой стрелки между направлением на геологический север и касательной к горизонтальной проекции оси скважины.
Направление касательной выбирается в сторону увеличения глубин скважины.
Вместо дирекционного угла часто используют получаемый непосредственно при измерениях магнитный азимут искривления φ. Дирекционный угол отличается от магнитного азимута на величину γ±D,
т.е. α = φ + γ ± D,
где γ - угол сближения (угол между меридианами осевым и в данной точке), D – магнитное склонение (восточное со знаком +, западное со знаком -).
Измерения поточечные, через 25 м, с 10% контрольных точек с перекрытием 3-5 точек по ранее исследованному интервалу.
При углах наклона свыше 10 градусов шаг измерений уменьшается до 10-15 м с увеличением контрольных замеров до 40-50%, обеспечивается высокое качество измерений угла и азимута наклона ствола скважины.
Инклинометрия реализуется на следующей аппаратуре:
- ИМММ.
ИМММ.
Назначение.
Инклинометр ИМММ 73 –120/60 (инклинометр магнитометрический многоточечный) предназначен для технологических измерений азимута и зенитного угла скважин, с выводом результатов измерений на цифровое табло и на внешнюю систему записи и обработки данных инклинометрии, которая автоматически вносит поправки и рассчитывает траекторию скважины.
Область применения – эксплуатационные бурящиеся необсаженные скважины на нефть и газ глубиной до 5000 м. для измерения азимута и зенитного угла, а также обсаженные скважины с диаметром обсадных колонн 125 мм и более только для измерения зенитного угла скважины.
Кроме того, инклинометр позволяет производить технологические измерения азимута и зенитного угла в колонне бурового инструмента с наружным диаметром 127 мм и более, содержащей в нижней части около турбобура трех легкосплавных бурильных труб (ЛБТ) по ГОСТ 23786-79. Измерения проводятся на расстоянии не менее 15 м от стальной колонны и турбобура, а также не менее 3 м от стального замкового соединения ЛБТ.
На рисунке приведена блок-схема, поясняющая состав инклинометра и связь наземного прибора со скважинным.
Рис. 21
Наземный прибор устанавливается в подъемнике или в каротажной станции, скважинный прибор под собственным весом спускается на каротажном кабеле в скважину. Скважинный прибор состоит из электронного блока, блока датчиков и наконечника. Наконечник применяется для увеличения длины и веса скважинного прибора при большой кавернозности скважины и плохой проходимости прибора. Скважинный прибор служит для измерения азимута и зенитного угла скважины, а также локации стальных замковых соединений. Измеренный параметр в коде передается по кабелю в наземный прибор.
Наземный прибор используется для приема и индикации на световом табло измеренной информации, управлением режимом измерения, а также питания скважинного прибора. Схематично вид измерительной панели наземного прибора показан на рисунке.
Рис.22
В наземном приборе переключателем S1, имеющим 6 положений, устанавливается номинальный ток питания (200мА) скважинного прибора, контролируемый по амперметру А. Тумблер S2 меняет полярность напряжения на клеммах ЦЖК и ОК скважинного прибора - переводится в положение измеряемого параметра, азимута или зенитного угла. Переключение этого тумблера является командой начала измерения. После окончания цикла измерения, скважинным прибором производится передача результата в наземный прибор, измеряемый параметр преобразуется в двоично-десятичный код и на цифровое табло выводится принятая информация. Этот же результат поступает на выход для регистрации внешними устройствами.
При измерениях в колонне ЛБТ выполняется локация муфт стальных замковых соединений. Для этого тумблер режима работы устанавливается в положение «азимут» и при прохождения скважинного прибора в зоне искаженного стальными замками магнитного поля со скважинного прибора поступает сигнал. Наземный прибор, приняв этот сигнал, формирует световое и звуковое подтверждение.
Данные по аппаратуре.
Диапазон рабочих температур от -10 до 120 ° С. Наибольшее гидростатическое давление 60 МПа.
Аппаратура эксплуатируется с трехжильным геофизическим кабелем типа КГ3-67-180 длиной до 5000 м.
Диапазон измерения азимута 0 - 360° С, диапазон измерения угла 0 - 100° С.
Пределы допускаемой основной погрешности:
- при измерении азимута в диапазоне зенитных углов от 3 до 100° - ± 1°;
- при измерении зенитного угла - ± 15’.
Ток питания прибора (200± 20) мА.
Диаметр прибора ИМММ - 73 мм.
Длина - 2710 мм.
Масса - 25 кг.
12. Плотностной гамма-гамма-каротаж (ГГКп).
Метод ГГКп относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в открытом стволе, в интервалах детальных исследований, совместно с комплексом БКЗ.
ГГКп в комплексе методов ГИС имеет высокую геологическую эффективность и применяется для определения объемной плотности среды, пористости, литологического расчленения разреза, выделение пластов с аномально низкой объемной плотностью.
ГГКп решает следующие геофизические задачи:
- проводится детальное сплошное расчленение разреза по электронной плотности, которая тесно связана с объемной плотностью породы и эквивалентна ей после внесения поправок за эквивалентный номер и атомную массу породы;
- обеспечивается высокое вертикальное расчленение разреза (выделяются контрастные по объемной плотности прослои, начиная с мощности 0,4-0,6 м и больше);
- обеспечивается определение объемной плотности слоя породы толщиной 7-15 см вглубь пласта (с увеличением плотности среды глубинность ГГКп уменьшается, и наоборот).
ГГКп необходим для решения следующих геологических задач:
- литостратиграфическое расчленение разреза (в сочетании с комплексом ГИС);
- в неглинистых терригенных и карбонатных коллекторах определяется пористость (отдельно по ГГКп, или в сочетании с АК, НКТ) при промывочной жидкости любого состава;
- в глинистых терригенных и карбонатных коллекторах определяется пористость только по комплексу методов ГГКп, АК, НКТ, ГК, также при промывочной жидкости любого состава (пресная, минерализованная);
- оценка общей пористости в коллекторах со сложной структурой порового пространства с привлечением АК, НКТ, ГК;
- выделение газонасыщенных интервалов (в комплексе методов ГИС) в пластах без проникновения и с высокими фильтрационно-емкостными свойствами;
- выделение зон разуплотнений, других деформаций различного генезиса, интервалов с изменением эффективного давления (как разность горного и пластового давления), приводящего к разуплотнению пород, в том числе участков с аномально высокими пластовыми и внутрипоровыми давлениями;
- выделение углей, зон интенсивной углефикации, карбонатных пород, пластов-реперов, опорных пластов.
Физические основы метода.
Метод плотностного гамма-гамма каротажа основан на измерении интенсивности искусственного гамма-излучения, рассеянного породообразующими элементами в процессе их облучения потоком гамма-квантов.
Основными процессами взаимодействия гамма-квантов с породой являются фотоэлектрическое поглощение, комптоновское рассеяние и образование электронно-позитронных пар. В методах рассеянного гамма-излучения в основном имеют место фотоэлектрическое поглощение и комптоновское рассеяние гамма-квантов породой. В зависимости от энергии гамма-квантов и вещественного состава горной породы преобладает тот или иной процесс их взаимодействия.
При взаимодействии с горной породой жестких гамма-квантов с энергией больше 0,5 МэВ в начальный момент основную роль играет комптоновское рассеяние, в результате которого жесткое гамма-излучение, потеряв значительную часть своей энергии, переходит в мягкое гамма-излучение. В дальнейшем основную роль играет фотоэлектрическое поглощение гамма-квантов. Вероятность комптоновского рассеяния в конечном счете находится в прямо пропорциональной зависимости от плотности горной породы, а вероятность фотоэлектрического поглощения - от ее вещественного состава и особенно от содержания тяжелых элементов. Таким образом, если горную породу облучить гамма-квантами не ниже 0,5 МэВ и установить энергетический порог дискриминации, обрезающий мягкую компоненту, то по результатам измерений ГГКп можно установить плотность породы.
В качестве источника гамма-излучения обычно используется Cs137 с энергией 0,66 МэВ, а мягкая компонента излучения поглощается экранами из свинца и кадмия. При проведении измерений детектор гамма-излучения располагается на определенном расстоянии от источника. Расстояние от источника до детектора выбирается таким, что при увеличении плотности горных пород, зарегистрированная интенсивность гамма-квантов уменьшается, т.е. зонд является заинверсионным. С целью уменьшения влияния скважинных условий на результаты ГГКп (диаметра скважины и слоя бурового раствора) применяют устройства, прижимающие зонд к стенке скважины стороной, на которой смонированы коллимационные окна для источника и детекторов. Наличие двух зондов ГГКп разной длины позволяет максимально снизить влияние глинистой корки на регистрируемую плотность горных пород.
Определенную погрешность в измерения ГГКп вносит естественная радиоактивность горных пород, поэтому при расчете плотности необходимо вносить поправку, основываясь на данных гамма-каротажа.
По данным плотностного каротажа можно рассчитать коэффициент пористости породы Кп(%), который связан с плотностью соотношением:
,
где σ - объемная плотность породы, кг/куб.м;
σм - плотность минерального скелета, кг/куб.м;
σж - плотность жидкости, заполняющей поровое пространство, кг/куб.м.
Оценка качества .
Качество материала ГГКп оценивается по следующим параметрам:
- допустимая абсолютная погрешность измерения плотности по результатам основной и контрольной записи не должна превышать 0,05 г/см3 ;
- разница значений плотности ПКУ до и после измерений по усредненным показаниям должна быть не более 0,03 г/см3 ;
- пористость, полученная по данным ГГКп должна биться с данными других методов (ННКт, АК). Пористость по данным ГГКп можно с достаточной точностью рассчитать по формуле:
где -σ объемная плотность породы, кг/куб.м;
Методические приемы, повышающие эффективность ГГКп, следующие:
- диаграммы должны быть только высокого качества;
- параметры регистрации диаграмм ГГКп (скорость записи, стабильность работы каналов ГГКп, масштабы регистрации, метрологические поверки и др.) должны обеспечивать высокое качество записей по всему диапазону значений плотности, который определяется техническими возможностями аппаратуры ГГКп;
- измерения следует проводить при минимальных толщинах глинистой корки;
- исключать влияния промывочной жидкости качественным прижатием прибора к стенке скважины;
- пористость определять с учетом возможных изменений минералогической плотности скелета породы, плотности флюида в порах того слоя пласта, который захватывается измерением радиальной характеристики аппаратуры ГГКп;
- во всех случаях определения Кп предпочтительнее проводить по комплексу методов (ГГКп, АК, НКТ, ГК и др.);
- при отсутствии проникновения в пласт, высоким газонасыщении ближней зоны по ГГКп с привлечением НКТ возможны выделения интервалов газонасыщения, которое занижает Кп по НКТ, завышает Кп по ГГКп и этот развал значений Кп должен использоваться как значащий признак газонасыщения.
Плотностной гамма-гамма-каротаж проводится аппаратурой СГП2
СГП2.
Назначение.
Аппаратура СГП2 предназначена для измерения объемной плотности горных в скважинах диаметром от 160 до 320 мм.
Данные по аппаратуре .
Аппаратура эксплуатируется в комплекте со следующими изделиями:
- трехжильным кабелем типа КГ3-67-180 длиной до 7500 м;
- источником гамма-излучения Cs137 активностью (1.28±0.33)x1010 Бк, создающим на расстоянии 1 м мощность экспозиционной дозы (5.95 ±1.55)x10-9 А/кг.
Диапазон измерения объемной плотности горных пород от 1.7x103 до 3.0x103 кг/м3
Количество каналов -2: канал большого зонда (ГГКп бз) и канал малого зонда (ГГКп мз).
Диапазон рабочих температур скважинного прибора от - 10 до 200 о С, рабочее гидростатическое давление - до 120 МПа.
В качестве детекторов используются кристаллы NaI(Tl) размерами 25x30 мм в канале малого и 25 x 40 мм в канале большого зондов ГГКп в комплекте с ФЭУ-74А. Коллимационные окна заполнены капролоном. Для регулировки
29-04-2015, 00:39