Строение атома. Есть ли предел таблицы Менделеева?

Пермский государственный педагогический университет

Реферат по теме

Эволюция представлений

о строении атома.

Есть ли предел

системе элементов Менделеева?

Выполнил студент 141 группы

Попов Илья

Пермь 2002

ОГЛАВЛЕНИЕ

Возникновение атомистики. 3

Атомистика в послеаристотелевскую эпоху. 5

Дальнейшее развитие атомистики (XIX в.) 5

Периодический закон. Есть ли граница системы элементов Менделеева?. 6

Интерпретация периодического закона. 9

Aтом Резерфорда-Бора. 10

Модели atоma до бора. 10

Открытие атомного ядра. 11

Atom бора. 13

Возникновение квантовой механики (1925— 1930 гг) 16

Трудности теории бора. 16

Идеи де Бройля. 18

Открытие спина. 18

Список использованной литературы.. 19

Возникновение атомистики

Вопрос о строении окружающего мира всегда волновал человека. Начало современной науке о строении вещества было положено в античном мире, работами древнегреческих ученых разных школ – ионийской, элеатской, пифагорейской.

Идея первичной материи (праматерии) ионийцев была очень привлека­тельной и неоднократно в той или иной форме возрождалась в физике.

Пытливое мышление древних греков построило концепцию элементов, из которых по­строена Вселенная. Впервые эта кон­цепция была выдвинута Эмпедоклом (около 490—430 гг. до н.э.). «Эмпедокл,—говорил грече­ский философ и историк науки Тео-Фраст, — предполагает четыре матери­альных элемента, а именно: огонь, воз­дух, воду и землю; эти элементы, бу­дучи вечными, изменяются по числу и величине путем соединения и раз­деления. Существуют два начала, при помощи которых элементы при­водятся в движение — Любовь и Вражда, ибо элементы должны подвергаться двоякому дви­жению, а именно: то соединению путем Любви, то разделению путем Вражды».

Таким образом, все разнообразие вещей, по Эмпедоклу, обусловлено сочетанием четырех различных эле­ментов, а причиной изменения в при­роде является действие притягательных и отталкивательных сил, которые у Эмпедокла носят названия—Любовь и Вражда.

Существенно, что Эмпедокл ясно утвер­ждал всеобщее начало сохранения. Его элементы вечны и неразруши­мы. «Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться». С этого принципа Эмпедокла и начинается история законов сохранения, игра­ющих такую фундаментальную роль в современной физике.

С V в. до н.э. центр греческой науки сконцентрировался в Афинах. Здесь появи­лись первые науч­ные школы. Здесь учил матема­тик Гиппократ, философ и физик Анаксагор (около 500—428 гг. до н. э.), создавший учение о «семенах» всех вещей и движущем начале «нус» (дух), сообщившем элементам мате­рии вращательное движение, в ре­зультате которого образовалась Земля и все вещи.

Анаксагор был современником основателей атомистики Левкиппа и Демокрита (около 460-370 гг. до н.э.).

Демокрит написал множество про­изведений по различным отраслям науки: математике, физике, фило­софии и др. Основные положения теории Демо­крита воспроизводятся во многих современных книгах по физике и философии почти одними и теми же словами:

1. Из ничего не происходит ничего. Ничто существующее не может быть разрушено. Все изменения происходят благодаря соединению и разложению частей.

2. Ничто не совершается случайно, но все совершается по какому-нибудь основанию и с необходимостью.

3. Не существует ничего, кроме ато­мов и чистого пространства, все другое только воззрение.

4. Атомы бесконечны по числу и бесконечно разнообразны по форме. В вечном падении через бесконечное пространство большие, которые падают скорее, ударяются о меньшие; возни­кающие из этого боковые движения и вихри служат началом образования мира. Бесчисленные миры образу­ются и снова исчезают одни рядом с другими и одни после других.

5. Различие между вещами проис­ходит от различия их атомов в числе, величине, форме и порядке; качествен­ного различия между атомами не су­ществует. В атоме нет никаких «внут­ренних состояний»; они действуют друг на друга только путем давления и удара.

6. Душа состоит из тонких, гладких и круглых атомов, подобных атомам огня. Эти атомы наиболее подвижны, и движения их, проникающие в тело, производят все жизненные явления.

Атомное учение, пройдя через века, выдержало ожесточенную борьбу с идеализмом и стало основой всего современного естествознания.

В учении атомистов играет сущест­венную роль принцип сохранения, ко­торый, как мы видим, был уже у ионийцев. Новым моментом является допущение пустоты. Ни у ионий­цев, ни у пифагорейцев, ни у элеа-тов пустоте нет места.

В системе Демокрита нет места для какого-то «разума», производящего дви­жение частиц, движение атомов веч­но и не нуждается в особом нача­ле. Движущиеся в пустом бесконеч­ном пространстве атомы, сталкива­ясь друг с другом, производят все вещи и бесчисленные миры. Пустое бесконечное пространство Демок­рита - это совершенно новый эле­мент картины мира, и его появле­ние вызвано успехами геометрии.

Сам Демокрит был крупным ма­тематиком. В математических доказательствах Де­мокрита огромную роль играла ато­мистика. Атомами линии были точ­ки, атомами поверхности — линии, атомами объемов—тонкие листки.

Успехи геометрии формировали представление о пустом пространстве, лишенном каких-либо чувственно осязаемых свойств. Линии, поверхности, геометрические тела ста­новились абстрактными образами, чи­стой формой. Пространство, свойства которого в дальнейшем описал Евклид, является чистой протяженностью, лишенной материального содержа­ния, и ареной движения атомов, вместилищем всех тел природы. Со­гласно учению атомистов бесконеч­но пустого пространства и атомов достаточно для описания разно­образных явлений мира, в том, числе социальных и психических. Учение атомистов—монистическое учение, по которому материя и дви­жение—основы бытия.

К 431—404 гг. до н.э. наступил упадок Афин и афин­ской демократии. Происходили глубо­кие изменения в идеологии. Матери­алистическая система ионийцев и ато­мистов вытеснилась идеалистической философией Сократа (469—399 гг. до н.э.) и его ученика Платона (427—347 гг. до н.э.). Обще­ство ощущало потребность в систе­матизированном научном знании, и на долю ученика Платона, знаменитого мыслителя древности Аристотеля выпа­ла задача составить систематический свод научных знаний своего времени.

Научное наследие Аристотеля огромно. Оно образует полную энцикло­педию научных знаний своего вре­мени. Пожалуй, ни один ученый не оказы­вал такого длительного и глубокого вли­яния на развитие человеческой мысли, как Аристотель. Его воззрения прини­мались за истину в течение ряда столе­тий. В средневековых европейских уни­верситетах естествознание излагалось по Аристотелю, которого называли предтечей Христа в истолковании природы.

Он признавал объективное существо­вание материального мира и его по­знаваемость. Но одновременно он верил в существование богов, про­тивопоставлял земной и небесный миры, искал высшую цель приро­ды и т. п.

Аристотель был крестным отцом науки о мире. Название его книги, посвященной исследованию природы («физика»), стало названием физиче­ской науки.

Существенным моментом в пред­ставлении Аристотеля о материи явля­ется то, что она сама по себе служит только возможностью возникновения реальной вещи, некоторым пассивным началом природы. Для того чтобы вещь стала реальностью, она должна полу­чить форму, которая превращает воз­можность в действительность. Вся­кая вещь есть единство материи и формы, в природе происходят по­стоянные переходы материи в форму, формы в материю. Отсюда возни­кает учение Аристотеля о четырех действующих причинах: 1) мате­риальной; 2) формальной; 3) произво­дящей; 4) конечной. Активная произ­водящая причина есть движение, ко­нечная — цель.

Учение о четырех причинах полу­чило большое распространение в сред­ние века, став краеугольным камнем схоластики.

В своей «физике» Аристотель по­дробно разбирает взгляды своих пред­шественников — ионийцев, элеатов, Анаксагора, Левкиппа и Демокрита на первоначала мира. Он критикует воз­зрения атомистов, признающих пу­стоту и бесчисленное множество ато­мов и миров, так как, по его мнению, эта точка зрения приводит к логи­ческим противоречиям. Бесконечное мыслимо только в возможности («по­тенциальная бесконечность»), ре­альный мир конечен и ограничен и построен из конечного числа эле­ментов.

Понятие пустоты, по Аристотелю, также ведет к противоречиям с действи­тельностью. Правильно подметив, что среда оказывает сопротивление движе­нию и тем большее, чем она плотнее, Аристотель приходит к выводу, что бесконечное разреженное пустое про­странство приводило бы к бесконеч­ному движению. Это, по его мнению, невозможно. В отсутствие сопротив­ления скорость тела была бы беско­нечной, что также невозможно. Лю­бопытно, что другим аргументом против пустоты является совершен­но правильный вывод Аристотеля об одинаковой скорости падения всех тел в пустоте, равно как и вы­вод о бесконечном инерциальном дви­жении. В реальных условиях движе­ние конечно и тела падают с разной скоростью. Аристотель полагает, что, чем тяжелее тело, тем быстрее оно падает.

Пустота, невесомость, по Аристо­телю, неестественны, невозможны. Аристотелевский физик—это человек, живущий в воздушной среде на непод­вижной Земле, в поле тяготения этой Земли и не мыслящий мир без этих атрибутов. В соответствии с повседнев­ными представлениями Аристотель принимает геоцентрическую систему мира и концепцию ограниченной Все­ленной, расслоенной на сферы движе­ния небесных светил.

Естествознанию предстояло пройти длительный путь поисков и борьбы, чтобы прийти к иному миропони­манию.

Атомистика в послеаристотелевскую эпоху

Войны Александра Македонского изменили лицо древнего мира и при­вели в соприкосновение греческую и восточную цивилизации. Из этого кон­такта возник сплав культуры, игра­ющий большую роль в мировой истории.

В истории науки и культуры древ­него мира начался новый период, полу­чивший название эллинистического, продолжавшийся от образования эллинистических госу­дарств (конец IV—начало III в. до н.э.).

Последним блестящий представитель афинской науки был Эпикур (341—270 гг. до н. э.), развивший учение Демокрита о при­роде.

Учение Эпикура о природе основано на концепции атомов Демокрита, но несколько отличном. Значителен размах атомной теории. Существованием атомов Эпи­кур, а за ним и Лукреций пытаются объяснить все естественные, психиче­ские и социальные явления. Само представление об атомах выводится из хорошо известных фактов. Так, белье сохнет потому, что под действием солнца и ветра от него отрываются невидимые частицы воды, рука медной статуи у городских ворот, к которой прикасаются в поцелуе губы входя­щих в город, заметно тоньше по сравнению с другой рукой, так как при поцелуе губы уносят частицы меди.

Атомы находятся в беспорядочном движении, и Лукреций рисует модель движения атомов, уподобляя его дви­жению пылинок в солнечном луче, ворвавшемся в темную комнату. Это первая в истории науки картина моле­кулярного движения, написанная древним автором. Само хаотическое движение атомов Эпикур объясняет иначе, чем Демокрит. Эпикур не признает различия в ско­рости падения малых и больших ато­мов; в пустом пространстве все частицы движутся с одинаковой скоростью. Но в некоторые моменты самопроиз­вольно возникают случайные небольшие отклонения той или иной частицы от прямолинейного пути. Эти отклонения Эпикур считал необходимыми, чтобы объяснить свободную волю людей, так что атомы как бы также обладают некоей «свободой воли».

Гениальные догадки древних атомистов предопределили будущий успех атомной теории материи.

Атомистика Эпикура — Лукреция продолжала линию научного развития доаристотелевского периода. Но атомистика послеаристотелевской эпохи носит и существенно новые черты: она более конкретна, более «физична», чем теория Аристотеля и атомистика Демокрита. Атомы Де­мокрита по существу чисто геометри­ческие образы, они характеризуются только формой и объемом. У Эпикура и Лукреция атомы обладают весом, плотностью (твердостью) и, наконец, внутренней способностью к само­произвольным отклонениям от пря­молинейного движения.

Естествознание в эту эпоху стало переходить из сферы отвлеченно­го, философского размышления о природе в сферу конкретных фактов и явлений.

Евклид (жил в III в. до н.э.) подыто­жил и систематизировал математичес­кие знания своих предшественников, из коих его учителем был знаменитый ученый Евдокс Книдский. «Начала» Евклида представляют собой изложе­ние той геометрии, которая известна и поныне под названием евклидовой геометрии.

Евклидово пространство пустое, безгра­ничное, изотропное, имеющее три измерения. Евклид придал мате­матическую определенность атомис­тической идее пустого пространства, в котором движутся атомы. Простей­шим геометрическим объектом у Ев­клида является точка, которую он определяет как то, что не имеет частей. Другими словами, точка— это неделимый атом пространства.

Дальнейшее развитие атомистики ( XIX в.)

Всеобъемлемость принципов термо­динамики, открытых и разработанных к этому времени и, в частности, второго начала, заставляла физиков-теоретиков искать причины универсальной мощи термодинамики.

В результате в науке возникли два направления: феноме­нологическое и атомистическое. Фено­менологическое направление не счи­тало необходимым искать более глубо­ких причин физических процессов, оно ограничивало задачу изучения приро­ды описанием явлений на основе экс­периментально установленных принци­пов. Энергетики Гельм, Оствальд и другие считали энергию основным по­нятием науки, а такие понятия, как «ма­терия», «сила», производными и даже излишними.

Что касается представления об ато­мах и молекулах, то энергетики, а так­же венский физик Эрнст Мах, один из видных сторонников феноменологи­ческого направления, считали эти пред­ставления продуктами чистой фанта­зии, аналогичными представлениям о ведьмах и привидениях.

Однако такие видные представители науки, как Клаузиус, Максвелл, а затем Больцман, с успехом разрабатывали молекулярно-кинетическую теорию.

Максвелл, Клаузиус, Больцман, Гиббс, развивая физическую атомистику, иска­ли законы, управляющие поведением коллектива атомов и молекул, делая по возможности простые гипотезы о строе­нии самих атомов. В XIX в. единствен­ным средством наблюдать взаимодей­ствия атомов и определять их индивиду­альные особенности были химические реакции. Именно в недрах химической атомистики родилась первая гипотеза о строении всех атомов из атомов водо­рода (Проут, 1815).

В 1859 г. было сделано важное открытие в оптике, физик Густав Кирхгос (1824-1887) и химик Роберт Бунзен (1811—1899) открыли спектральный ана­лиз, давший в руки химикам новое мощное средство исследования.

Периодический закон. Есть ли граница системы элементов Менделеева?

В 1869 г. уже было известно 63 химических элемента. В этом же году Д.И.Менделеев открыл фундаменталь­ный закон распределения элементов в систему, которую он назвал периоди­ческой системой химических элементов.

До этого на протяжении более ста лет в научном мире господствовала картина мира, которую вполне выразил 1808 году своим трудом «Новая система химической философии» Джон Дальтон.

Уже было известно, что водород, кислород, сера и другие вещества – простые тела состоят из атомов одного сорта, а вода, аммиак, углекислый газ и др. – сложные, созданы комбинацией атомов разных веществ. Это вполне подтверждалось опытами того времени.

Химические реакции, по Дальтону, заключаются в том, что атомы вступают друг с другом в разные комбинации, образуя «сложные атомы» (молекулы), затем эти молеку­лы распадаются, образуются новые молекулы и т. д., по­добно тому как танцоры, переходя от одного танца к другому; образуют новые комбинации. Но сами атомы при этом остаются неизменными и вечными: меняется только их распределение.

«Каждая частица воды,— гово­рит Дальтон в своей „Химической философии",— в точ­ности похожа на любую другую частицу воды; каждая частица водорода в точности похожа на любую другую частицу водорода и т. д. Химическое разложение и хи­мическое соединение означают лишь то, что атомы уда­ляются друг от друга или же снова сцепляются вместе. Но химик не способен уничтожить материю или создать ее вновь. Пытаться создать или уничтожить хотя бы один атом водорода так же безнадежно, как пытаться приба­вить еще одну планету к Солнечной системе или уничто­жить какую-нибудь из существующих планет. Все, что мы можем сделать,— это разъединить атомы, соединив­шиеся или сцепившиеся друг с другом, или же соеди­нить те атомы, которые сейчас находятся на большом расстоянии друг от друга».

«Химическая философия», изложенная в этих строках Дальтона, действительно стала философией целого ряда поколений химиков и физиков. Невозможность создания хотя бы одного нового атома данного химического эле­мента, невозможность превращения одних атомов в дру­гие — все это было необходимым выводом из всего огром­ного опытного материала, на котором основывалась науч­ная химия.

В этом пункте Дальтон не совсем сходился с Бойлем, который в 1661 году писал, что хотя атомы остают­ся неизменными при всех химических явлениях, но тем не менее когда-нибудь будет найден некий «сильный и тонкий агент», с помощью которого удастся разбить атомы на более мелкие части и превратить одни атомы в дру­гие.

Эта мысль Бойля казалась Дальтону чистой фантази­ей: ни один химический факт не указывал на то, что атомы возможно разбивать на части и превращать друг в друга.

В 1816 грду неожиданно нашелся один сторонник Бойля, пытавшийся под­твердить ее фактами. Это был Уильям Праут, который напечатал в жур­нале «Философские анналы» статью, где обращал особенное внимание на тот факт, что все атомные массы, которые определил Дальтон, выража­ются целыми числами. Это — очень замечательный факт, говорил Праут, ведь если бы атомы всех химических эле­ментов были первичными, основными частицами, подлин­ными «кирпичами мироздания», неразложимыми на частя и нисколько не связанными друг с другом, то какая могла бы быть причина того, что атом азота ровно в пять раз превосходит по массе атом водорода, а атом кислоро­да — ровно в семь раз?

Мнение Праута вот ка­кое: атом азота, который, по Дальтону, ровно в пять раз превосходит по массе атом водорода,— это и есть пять атомов водорода, очень тесно сцепленных друг с другом; атом кислорода — это семь атомов водорода, тесно сцеп­ленных друг с другом; атом ртути—это 167 тесно при­жавшихся друг к другу водородных атомов и т. д. Выходит, что все на свете состоит в конечном счете из водо­рода.

А чем же объяснить, что все-таки в химических опытах никак не удается, например, разложить кислород на водород? Очень просто, отвечает Праут, все дело в том, что когда семь атомов водорода сцепляются, чтобы образовать атом кислорода, то они сцепляются гораздо теснее, чем тогда, когда, например,

Страницы: 1 2 3 4