Концепции современной физики

са­мого света. Ведь и минеральную воду продают в бутылках, но от­сюда совсем не следует, что вода имеет прерывистую структуру и со­стоит из неделимых частей. Лишь явление фотоэффекта показало, что свет имеет прерывистую структуру:

излученная порция световой энер­гии E = hv сохраняет свою инди­видуальность и в дальнейшем. По­глотиться может только вся порция целиком.

Кинетическую энергию фотоэлек­трона можно найти, применив закон сохранения энергии. Это уравнение объясняет основ­ные факты, касающиеся фотоэффек­та. Интенсивность света, по Эйн­штейну, пропорциональна числу квантов (порций) энергии в свето­вом пучке и поэтому определяет число электронов, вырванных из ме­талла. Скорость же электронов со­гласно определяется только частотой света и работой выхода, зависящей от рода металла и состоя­ния его поверхности. От интенсив­ности света она не зависит.

Для каждого вещества фото­эффект наблюдается лишь в том слу­чае, если частота v света больше минимального значения. Ведь чтобы вырвать электрон из металла даже без сообщения ему кинетиче­ской энергии, нужно совершить рабо­ту выхода А. Следовательно, энергия кванта должна быть больше этой работы.

Предельную частоту, называ­ют красной границей фотоэффекта.

Для цинка красной границе соот­ветствует длина волны м (ультрафиолетовое излу­чение). Именно этим объясняется опыт по прекращению фотоэффекта с помощью стеклянной пластинки, задерживающей ультрафиолетовые лучи.

Работа выхода у алюминия или железа больше, чем у цинка. Поэто­му в опыте ис­пользовалась цинковая пластина. У щелочных металлов работа вы­хода, напротив, меньше, а длина вол­ны, соответствующая красной границе, больше.

Пользуясь уравнением Эйнштей­на можно найти постоянную Планка h . Для этого нужно экспе­риментально определить частоту све­та v, работу выхода А и измерить кинетическую энергию фотоэлектро­нов. Такого рода измерения и рас­четы дают Дж.с. Точ­но такое же значение было найдено Планком при теоретическом изуче­нии совершенно другого явления — теплового излучения. Совпадение значений постоянной Планка, полу­ченных различными методами, под­тверждает правильность предполо­жения о прерывистом характере из­лучения и поглощения света ве­ществом.

Уравнение Эйнштейна, не­смотря на свою простоту, объясняет основные закономерности фотоэф­фекта. Эйнштейн был удостоен Но­белевской премии за работы по тео­рии фотоэффекта.

В современной физике фотон рас­сматривается как одна их элемен­тарных частиц. Таблица элементар­ных частиц уже многие десятки лет начинается с фотона.

Энергия и импульс фотона. При испускании и поглощении свет ведет себя подобно потоку частиц с энер­гией E = hv , зависящей от частоты. Порция света оказалась неожидан­но очень похожей на то, что принято называть частицей. Свойства света, обнаруживаемые при излучении и поглощении, называют корпускуляр­ными. Сама же световая частица была названа фотоном или квантом электромагнитного излучения.

Фотон подобно частицам обла­дает определенной порцией энергии hv. Энергию фотона часто выражают не через частоту v, а через цикли­ческую частоту.

Согласно теории относительности энергия всегда связана с массой соотношением. Так как энер­гия фотона равна hv, то, следова­тельно, его масса m получается рав­ной

Фотон лишен массы покоя то, т. е. он не существует в состоянии покоя, и при рождении сразу имеет скорость с. Масса, определяемая формулой, это масса движу­щегося фотона. Направлен импульс фотона по световому лучу.

Чем больше частота, тем больше энергия и импульс фотона и тем от­четливее выражены корпускулярные свойства света. Из-за того, что по­стоянная Планка мала, энергия фо­тонов видимого излучения крайне незначительна. Фотоны, соответ­ствующие зеленому свету, имеют энергию 4-10~19 Дж.

Тем не менее, в замечательных опытах С. И. Вавилова было уста­новлено, что человеческий глаз, этот тончайший из “приборов”, способен реагировать на различие освещенностей, измеряемое единичными квантами.

Ученые были вынуждены ввести представление о свете как о потоке частиц. Может показаться, что это возврат к корпускулярной теории Ньютона. Однако нельзя за­бывать, что интерференция и ди­фракция света вполне определенно говорят о наличии у света волновых свойств. Свет обладает своеобраз­ным дуализмом (двойственностью) свойств. При распространении света проявляются его волновые свойства, а при взаимодействии с веществом (излучении и поглощении) — корпус­кулярные. Все это, конечно, странно и непривычно. Мы не в состоянии пред­ставить себе наглядно, как же это может быть. Но, тем не менее, это факт. Мы лишены возможности пред­ставлять себе наглядно в полной мере процессы в микромире, так как они совершенно отличны от тех макро­скопических явлений, которые люди наблюдали на протяжении миллио­нов лет и основные законы кото­рых были сформулированы к концу XIX века.

С течением времени двойствен­ность свойств была открыта у элек­тронов и других элементарных час­тиц. Электрон, в частности, наряду с корпускулярными свойствами обла­дает также и волновыми. Наблю­дается дифракция и интерференция электронов.

Эти необычные свойства микро­объектов описываются с помощью квантовой механики — современной теории движения микрочастиц. Ме­ханика Ньютона оказывается здесь в большинстве случаев непримени­мой. Но изучение квантовой ме­ханики выходит за рамки школьного курса физики.

Фотон—элементарная частица, лишенная массы покоя и электри­ческого заряда, но обладающая энергией и импульсом. Это квант электромагнитного поля, которое осуществляет взаимодействие между заряженными частицами. Поглоще­ние и излучение электромагнитной энергии отдельными порциями — проявление корпускулярных свойств электромагнитного поля.

Корпускулярно-волновой дуа­лизм — общее свойство материи, про­являющееся на микроскопическом уровне.

АТОМНАЯ ФИЗИКА

Английский физик Эрнест Резерфорд исследовал рассеяние а-частиц десять тысяч раз меньшее по разме-веществом и открыл в 1911 г. атомное ядро - массивное образование.

Не сразу ученые пришли к правильным представле­ниям о строении атома. Первая модель атома была предложена ан­глийским физиком Дж. Дж. Томсоном, открывшим электрон. По мысли Томсона, положительный за­ряд атома занимает весь объем атома и распределен в этом объеме с по­стоянной плотностью. Простейший атом — атом водорода — представ­ляет собой положительно заряжен­ный шар радиусом около 10~8 см, внутри которого находится электрон. У более сложных атомов в положи­тельно заряженном шаре находится несколько электронов, так что атом подобен кексу, в котором роль изю­минок играют электроны.

Однако модель атома Томсона оказалась в полном противоречии с опытами по исследованию распре­деления положительного заряда в атоме. Эти опыты, произведенные впервые Э. Резерфордом, сыграли решающую роль в понимании строе­ния атома.

Из опытов Резерфорда непосредственно вытекает планетарная модель атома. В центре расположено положительно заряженное атомное ядро, в котором сосредоточена почти вся масса ато­ма. В целом атом нейтрален. Поэто­му число внутриатомных электронов, как и заряд ядра, равно порядко­вому номеру элемента в периодиче­ской системе. Ясно, что покоиться электроны внутри атома не могут, так как они упали бы на ядро. Они движутся вокруг ядра, подобно тому, как планеты обращаются во­круг Солнца. Такой характер дви­жения электронов определяется дей­ствием кулоновских сил со стороны ядра.

В атоме водорода вокруг ядра обращается всего лишь один элек­трон. Ядро атома водорода имеет положительный заряд, равный по модулю заряду электрона, и массу, примерно в 1836,1 раза большую массы электрона. Это ядро было на­звано протоном и стало рассматри­ваться как элементарная частица. Размер атома — это радиус орбиты его электрона.

Простая и наглядная планетар­ная модель атома имеет прямое экспериментальное обоснование. Она кажется совершенно - необходимой для объяснения опытов по рассеива­нию ос-частиц. Но на основе этой модели нельзя объяснить факт су­ществования атома, его устойчи­вость. Ведь движение электронов по орбитам происходит с ускорением, причем весьма немалым. Ускоренно движущийся заряд по законам элек­тродинамики Максвелла должен из­лучать электромагнитные волны частотой, равной частоте его обра­щения вокруг ядра. Излучение со­провождается потерей энергии. Те­ряя энергию, электроны должны приближаться к ядру, подобно тому, как спутник приближается к Земле при торможении в верхних слоях ат­мосферы. Как показывают строгие расчеты, основанные на механике Ньютона и электродинамике Мак­свелла, электрон за ничтожно малое время (порядка 10~8 с) должен упасть на ядро. Атом должен пре­кратить свое существование.

В действительности ничего подоб­ного не происходит. Атомы устой­чивы и в невозбужденном состоянии могут существовать неограниченно долго, совершенно не излучая элек­тромагнитные волны.

Не согласующийся с опытом вы­вод о неизбежной гибели атома вследствие потери энергии на излу­чение—это результат применения законов классической физики к яв­лениям, происходящим внутри атома. Отсюда следует, что к явлениям атомных масштабов законы класси­ческой физики неприменимы.

Резерфорд создал планетарную модель атома: электроны обращают­ся вокруг ядра, подобно тому, как планеты обращаются вокруг Солнца. Эта модель проста, обоснована экспериментально, но не позволяет объяснить устойчивость атомов.

КВАНТОВЫЕ ПОСТУЛАТЫ БОРА.

Выход из крайне затруднитель­ного положения в теории атома был найден в 1913 г. датским физиком Нильсом Бором на пути дальней­шего развития квантовых представ­лений о процессах в природе.

Эйнштейн оценивал проделанную Бором работу “как высшую музы­кальность в области мысли”, всегда его поражавшую. Основываясь на разрозненных опытных фактах. Бор с помощью гениальной интуиции пра­вильно предугадал существо дела.

Последователь­ной теории атома Бор, однако, не дал. Он в виде постулатов сфор­мулировал основные положения но­вой теории. Причем и законы клас­сической физики не отвергались им безоговорочно. Новые постулаты скорее налагали лишь некоторые ограничения на допускаемые клас­сической физикой движения.

Успех теории Бора был, тем не менее, поразительным, и всем ученым стало ясно, что Бор нашел правиль­ный путь развития теории. Этот путь привел впоследствии к созданию стройной теории движения микро­частиц—квантовой механики.

Первый постулат Бора гласит:

атомная система может находиться только в особых стационарных, или квантовых, состояниях, каждому из которых соответствует определенная энергия; в стационарном состоя­нии атом не излучает.

Этот постулат противоречит клас­сической механике, согласно которой энергия движущихся электронов мо­жет быть любой. Противоречит он и электродинамике Максвелла, так как допускает возможность ускоренного движения электронов без излучения электромагнитных волн.

Согласно второму постулату Бора излучение света происходит при пе­реходе атома из стационарного со­стояния с большей энергией в ста­ционарное состояние с меньшей энер­гией Энергия излученного фото­на равна разности энергий стацио­нарных состояний:

При поглощении света атом пере­ходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией.

Второй постулат также противо­речит электродинамике Максвелла, так как согласно этому постулату частота излучения света свидетель­ствует не об особенностях движения электрона, а лишь об изменении энергии атома.

Свои постулаты Бор применил для построения теории простейшей атомной системы—атома водорода. Основная задача состояла в нахож­дении частот электромагнитных волн, излучаемых водородом. Эти частоты можно найти на основе второго постулата, если располагать прави­лом определения стационарных зна­чений энергии атома. Это правило (так называемое правило квантова­ния) Бору опять-таки пришлось по­стулировать.

Используя законы механики Ньюто­на и правило квантования, отми­рающее возможные стационарное состояния, Бор смог вычислить До­пустимые радиусы орбит электрона и энергии стационарных состояний. Минимальный радиус орбиты опре­деляет размеры атома.

Второй постулат Бора позволяет вычислить по известным значениям энергий стационарных состояний частоты излучений атома водорода. Теория Бора приводит к количест­венному согласию с экспериментом для значений этих частот. Все час­тоты излучений атома водорода со­ставляют ряд серий, каждая из которых образуется при переходах атома в одно из энергетических со­стояний со всех верхних энергети­ческих состояний (состояний с боль­шей энергией).

Поглощение света — процесс, обратный излуче­нию. Атом, поглощая свет, пере­ходит из низших энергетических состояний в высшие. При этом он поглощает излучение той же самой частоты, которую излучает, переходя из высших энергетических состояний в низшие. На рисунке 168, б стрел­ками изображены переходы атома из одних состояний в другие с погло­щением света.

На основе двух постулатов и пра­вила квантования Бор определил ра­диус атома водорода и энергии ста­ционарных состояний атома. Это позволило вычислить частоты из­лучаемых и поглощаемых атомом электромагнитных волн.

КВАНТОВАЯ МЕХАНИКА

Наибольший успех теория Бора имела применительно к атому водо­рода, для которого оказалось воз­можным построить количественную теорию спектра.

Однако построить количествен­ную теорию для следующего за во­дородом атома гелия на основе боровских представлений не удалось. Относительно атома гелия и более сложных атомов теория Бора по­зволяла делать лишь качественные (хотя и очень важные) заключе­ния.

Теория Бора является половинчатой, внутренне противоречивой. С одной стороны, при построении теории атома водо­рода использовались обычные за­коны механики Ньютона и давно известный закон Кулона, а с дру­гой — вводились квантовые посту­латы, никак не связанные с меха­никой Ньютона и электродинамикой Максвелла. Введение в физику кван­товых представлений требовало ра­дикальной перестройки, как механи­ки, так и электродинамики. Эта пере­стройка была осуществлена в начале второй четверти нашего века, когда были созданы новые физические тео­рии: квантовая механика и кван­товая электродинамика.

Постулаты Бора оказались совер­шенно правильными. Но они вы­ступали уже не как постулаты, а как следствия основных принципов этих теорий. Правило же квантова­ния Бора, как выяснилось, приме­нимо далеко не всегда.

Представление об определенных орбитах, по которым движется элек­трон в атоме Бора, оказалось весьма условным. На самом деле движение электрона в атоме имеет очень мало общего с движением планет по ор­битам. Если бы атом водорода в наинизшем энергетическом состоя­нии можно было бы сфотографиро­вать с большой выдержкой, то мы увидели бы облако с переменной плотностью. Большую часть времени электрон проводит на определенном расстоянии от ядра.

В настоящее время с помощью квантовой механики можно ответить

на любой вопрос, относящийся к строению и свойствам электронных оболочек атомов. Но количественная теория оказывается весьма сложной, и мы ее касаться не будем. С ка­чественным описанием электронных оболочек атомов вы знакомились в курсе химии.

ЛАЗЕРЫ

В 1917 г. Эйнштейн предсказал воз­можность так называемого индуци­рованного (вынужденного) излуче­ния света атомами. Под индуци­рованным излучением понимается излучение возбужденных атомов под действием падающего на них света. Замечательной особенностью этого излучения является то, что возник­шая при индуцированном излучении световая волна не отличается от вол­ны, падающей на атом, ни частотой, ни фазой, ни поляризацией.

На языке квантовой теории вы­нужденное излучение означает пере­ход атома из высшего энергетиче­ского состояния в низшее, но не само­произвольно, как при обычном излу­чении, а под влиянием внешнего воз­действия.

Еще в 1940 г. советский физик В. А. Фабрикант указал на возможность использования явления вынужденного излучения для уси­ления электромагнитных волн. В 1954 г. советские ученые Н. Г. Ба­сов и А. М. Прохоров и независимо от них американский физик Ч. Таунс использовали явление индуцирован­ного излучения для создания микро­волнового генератора радиоволн с длиной волны ==1,27 см. За раз­работку нового принципа генерации и усиления радиоволн Н. Г. Басову и А. М. Прохорову была в 1959 г. присуждена Ленинская премия. В 1963 г. Н. Г. Басов, А. М. Про­хоров и Ч. Таунс были удостоены Нобелевской премии.

В 1960 г. в CШA был создан первый лазер — квантовый генератор электромагнитных волн в видимом диапазоне спектра.

Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света:

1. Лазеры способны создавать пучки света с очень малым углом расхождения (около 10~5 рад). На Луне такой пучок, испущенный с Земли, дает пятно диаметром 3 км.

2. Свет лазера обладает исклю­чительной монохроматичностью. В отличие от обычных источников све­та, атомы которых излучают свет не­зависимо друг от друга, в лазерах атомы излучают свет согласованно. Поэтому фаза волны не испытывает нерегулярных изменений.

3. Лазеры являются самыми мощными источниками света. В уз­ком интервале спектра кратковре­менно (в течение промежутка време­ни продолжительностью порядка 10~13 с) у некоторых типов лазеров достигается мощность излучения 1017 Вт/см2 , в то время как мощ­ность излучения Солнца равна толь­ко 7-103 Вт/см2 , причем суммарно по всему спектру. На узкий же интер­вал =10~6 см (ширина спектраль­ной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см2 . На­пряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома. В обычных условиях большинство ато­мов находится в низшем энергетическом состоянии. Поэтому при низ­ких температурах вещества не све­тятся. При прохождении электромаг­нитной волны сквозь вещество ее энергия поглощается. За счет по­глощенной энергии волны часть ато­мов возбуждается, т. е. переходит в высшее энергетическое состояние.

Сущест­вуют различные методы получения среды с возбужденными состояниями атомов. В рубиновом лазере для этого используется специальная мощная лампа. Атомы возбуждают­ся за счет поглощения света.

Но двух уровней энергии для ра­боты лазера недостаточно. Каким бы мощным ни был свет лампы, число возбужденных атомов не будет боль­ше числа невозбужденных. Ведь свет одновременно и возбуждает атомы, и вызывает индуцированные пере­ходы с верхнего уровня на нижний.

В газовых лазерах этого типа рабочим веществом является газ. Атомы рабочего вещества возбуж­даются электрическим разрядом.

Применяются и полупроводнико­вые лазеры непрерывного действия. Они созданы впервые в нашей стра­не. В них энергия для излучения заимствуется от электрического тока.

Созданы очень мощные газоди­намические лазеры непрерывного действия на сотни киловатт. В этих лазерах “перенаселенность” верхних энергетических уровней создается при расширении и адиабатном ох­лаждении сверхзвуковых газовых по­токов, нагретых до нескольких тысяч кельвин.

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Когда греческий философ Демок­рит назвал простейшие нерасчлени­мые далее частицы атомами (слово атом, напомним, означает “недели­мый”), то ему, вероятно, все пред­ставлялось в принципе не очень сложным. Различные предметы, рас­тения, животные построены из неде­лимых, неизменных частиц. Превра­щения, наблюдаемые в мире,— это простая перестановка атомов. Все в мире течет, все изменяется, кроме самих атомов, которые остаются не­изменными.

Но в конце XIX века было откры­то


29-04-2015, 02:10


Страницы: 1 2 3
Разделы сайта