Интуиционизм
- направление в обосновании математики и логики, согласно которому конечным критерием приемлемости методов и результатов этих наук является наглядно-содержательная интуиция. Вся математика должна опираться, согласно И., на интуитивное представление ряда натуральных чисел и на принцип математической индукции, истолковываемый как требование действовать последовательно, шаг за шагом; допускаются лишь конструктивные доказательства существования рассматриваемого объекта, указывающие способ его построения. Создателем И. является голландский математик Л. Э. Я. Брауэр (1881 — 1966). В начале XX в. он выдвинул программу радикальной перестройки математики, противопоставив ее концепции сведения математики к логике (см.: Логицизм) и истолкованию математики исключительно как языка математических символов (см.: Формализм). Представители И. полагают, что чистая математика является мыслительной активностью, не зависящей от языка, ее объект -нелингвистические математические конструкции. Язык служит лишь для сообщения математических идей, математика не сводится к языку и тем более не может быть истолкована как особый язык. Предметом исследования (математической) логики является математический язык, более или менее адекватно передающий математические построения. Логика вторична по отношению к математике, последняя не может быть обоснована с помощью логических средств. Основной тезис интуиционистов гласит, что существование в математике — это то же самое, что конструктивность, или «построяемость». Из существования математического объекта вытекает его непротиворечивость, но не наоборот: не каждый непротиворечивый объект существует. Построение является единственным средством обоснования в математике. Интуиционисты подвергли резкой критике закон исключенного третьего, закон (снятия) двойного отрицания и ряд других законов логики классической. Согласно Брауэру, логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Закон исключенного третьего, верный в случае конечной математики, неприменим в рассуждениях о бесконечных множествах. Объекты бесконечного множества невозможно перебрать. Если в процессе перебора не удалось найти элемент с требуемым свойством, ни утверждение о существовании такого объекта, ни отрицание этого утверждения не является истинным. Критика И. классической логики привела к созданию нового направления в логике — интуиционистской логики. Одновременно с Брауэром сомнения в универсальной приложимости закона исключенного третьего высказал рус. философ и логик Н. А. Васильев (1880-1940). Он ставил своей задачей построение такой системы логики, в которой была бы ограничена не только сфера действия этого закона, но и непротиворечия закона. Казавшиеся парадоксальными, идеи Васильева не были в свое время оценены по достоинству.
Основные идеи интуиционизма
Источник математики, считал Брауэр, - фундаментальная математическая интуиция. Не все обычные логические принципы приемлемы для нее. Так, в частности, обстоит дело с законом исключенного третьего, говорящим, что либо само утверждение, либо его отрицание истинно. Этот закон исторически возник в рассуждениях о конечных множествах объектов. Но затем он был необоснованно распространен также на бесконечные множества. Когда множество является конечным, мы можем решить, все ли входящие в него объекты обладают некоторым свойством, проверив один за другим все эти объекты. Но для бесконечных множеств такая проверка невозможна.
Допустим, что мы, рассматривая конечный набор чисел, доказали, что не все они четны. Отсюда по закону исключенного третьего следует, что по крайней мере одно из них нечетно. При этом утверждение о существовании такого числа можно подтвердить, предъявив это число. Но если бы рассматриваемое множество чисел было бесконечным, заключение о существовании среди них хотя бы одного нечетного числа оказалось бы непроверяемым. Тем самым осталось бы неясным, что означает в этом случае само слово <существование>.
По выражению немецкого математика Г. Вейля, доказательства существования, опирающиеся на закон исключенного третьего, извещают мир о том, что сокровище существует, не указывая при этом местонахождение и не давая возможности воспользоваться им.
Таким образом, по убеждению интуиционистов, закон исключенного третьего не является универсальным, одинаково применимым в рассуждениях о любых объектах. Как не без иронии говорит Вейль, он <может быть верным для всемогущего и всезнающего существа, как бы обозревающего единым взглядом бесконечную последовательность натуральных чисел, но не для человеческой логики>.
Выдвигая на первый план математическую интуицию, интуиционисты не придавали большого значения систематизации логических правил. Только в 1930 г. ученик Брауэра А. Рейтинг опубликовал работу с изложением особой интуиционистской логики. В этой логике не действует закон исключенного третьего, несомненный для классической логики. Отбрасывается также ряд других законов, позволяющих доказывать существование объектов, которые нельзя построить или вычислить. В число отвергаемых попадают, в частности, закон снятия.двойного отрицания (<Если неверно, что не-А, то А>) и закон приведения к абсурду, дающий право утверждать, что математический объект существует, если предположение о его несуществовании приводит к противоречию.
В дальнейшем идеи, касающиеся ограниченной приложимости закона исключенного третьего и близких ему способов математического доказательства, были развиты российскими математиками А.Н. Колмогоровым, В.А. Гливенко, А.А. Марковым и другими. В результате переосмысления основных предпосылок интуиционистской логики возникла конструктивная логика, также считающая неправомерным перенос ряда логических принципов, применимых в рассуждениях о конечных множествах, на область бесконечных множеств.
15 ИНТУИЦИОНИСТСКАЯ ЛОГИКА
В 1908 г. Л. Брауэром были заложены основания интуиционистской логики. Это направление неклассической логики основано на принципе интуиционизма.
Интуиционизм признает главным и единственным критерием правомерности методов и результатов логики ее интуитивную – наглядно—содержательную убедительность (интуицию). Данное понятие заключается в двух положениях:
1) процессе умственного построения всех логических объектов;
2) отказе от использования абстракции актуальной бесконечности.
Главным объектом критики интуиционистской логики стал классический закон исключенного третьего. Л. Брауэр полагал, что, возникнув в конечном множестве объектов, закон исключенного третьего впоследствии был распространен на бесконечные множества, в результате чего проверить, обладают ли все предметы определенным свойством или нет, не является возможным.
Еще одним важным положением интуиционистской логики было отрицание существования логики вне рамок математики. По мнению интуи—ционистов логика возникла вместе с математикой.
Чтобы избежать парадоксов, математическое доказательство должно основываться не на логической строгости, а на интуитивной очевидности: оно достоверно при условии интуитивного понимания каждой его ступени начиная
с исходных посылок и правил рассуждения. Таким образом, о применимости в доказательстве тех или иных законов логики в конечном счете также должна судить интуиция. Однако при этом интуиционизм не противопоставляет интуицию логике, а развивает понимание логики исключительно как части математики.
Одним из направлений интуиционистской логики является конструктивная логика. Основная идея конструктивной логики заключается в запрещении переносить на бесконечные множества принципы, верные для конечных множеств (например, положение о том, что целое больше частного). Само понятие «бесконечность» конструктивная логика также трактует отлично от классической. Если в последней бесконечность – завершенное понятие, то в первой она является потенциальной и становящейся. Для конструктивной логики характерно индуктивное построение объектов и логико—математических теорий в целом. В рамках конструктивной логики был разработан специальный прием исследования – конструктивный метод. Он противопоставлялся аксиоматическому методу и основан на так называемых рекурсивных определениях, связанных с математической индукцией. Однако на данный момент он находит применение только в построении конструктивных наук: логики и математики. Большой вклад в развитие конструктивной логики внесли российские ученые А. Н. Колмогоров, А.А. Марков, Н. А. Шанин.
Лёйтзен Э́гберт Ян Бра́уэр (нидерл. Luitzen Egbertus Jan Brouwer; 27 февраля 1881 — 2 декабря 1966) — голландский философ и математик, выпускник университета Амстердама, работавший в таких областях математики, как топология, теория множеств, математическая логика, теория меры и комплексный анализ.
Член Нидерландской АН в Амстердаме (1912), член-корреспондент Парижской и Гёттингенской АН, профессор Амстердамского университета (1912—1951).
Лёйтзен Эгберт Ян Брауэр
Luitzen Egbertus Jan Brouwer
Дата рождения:
27 февраля 1881(1881-02-27)
Дата смерти:
2 декабря 1966(1966-12-02) (85 лет)
Страна:
Флаг Нидерландов Голландия
Научная сфера:
топология, теория множеств, математическая логика, теория меры, комплексный анализ
Место работы:
Амстердамский университет
Награды и премии
Теорема Брауэра
Большая советская энциклопедия
Брауэр Лёйтзен Эгберт Ян
Брауэр (Brouwer) Лёйтзен Эгберт Ян (27.2.1881, Оверсхи,—2.12.1966, Амстердам), голландский математик, член Нидерландской АН в Амстердаме (1912), член-корреспондент Парижской и Гёттингенской АН, профессор Амстердамского университета (1912—51). С 1908 Б. последовательно проводил критику т. н. чистых математических доказательств существования, опирающихся на логичность исключенного третьего принцип, что в конечном счёте положило начало целому направлению в обоснованиях математики — математическому интуиционизму. Но независимую от философии интуиционизма ценность имеет проведённый Б. анализ математических доказательств существования с точки зрения конструктивного построения тех объектов, существование которых доказывается. В частности, А. Н. Колмогоровым было показано, что правила так называемой интуиционистской логики находят своё реальное осуществление в логике конструктивного решения математических проблем. В 1911—13 Б. установил ряд важных понятий и результатов в области топологии. В их числе: понятия симплициальной аппроксимации и степени непрерывного отображения; понятие гомотопической классификации отображений; теорема о гомотопической эквивалентности двух отображений (сферы на себя), имеющих одну и ту же степень; теорема об инвариантности числа измерений и инвариантности внутренних точек (при топологическом отображении множества, лежащего в n-мeрном пространстве, в это же пространство); теорема о неподвижной точке, n-мeрная теорема Жордана и др. Эти результаты и методы, найденные для их доказательства, определили значительное влияние Б. на развитие топологии в период между 1-й и 2-й мировыми войнами.
Лит.: Александров П. С., Комбинаторная топология, М. — Л., 1947; Вейль Г., О философии математики. Сб. работ, пер. с нем., М. — Л., 1934 (см. раздел: О новом кризисе основ математики).
БРАУЭР Лёйтзен Эгберт Ян
Дата рождения: 27.02.1881
Дата смерти: 02.12.1966
Страна: Нидерланды
Голландский математик, чл. Нидерландской АН в Амстердаме (1912), чл.-кор. Парижской и Геттингенской АН. Чл. Американского философского о-ва (Филадельфия, 1943), чл. Лондонского королевского о-ва (1948), почетный доктор ун-тов в Осло (1929) и Кембридже (1955). Род. в Оверсхи. Профессор Амстердамского ун-та (1912—1951). В 1911 — 1913 Брауэр получил ряд важных результатов в области общей топологии, в частности доказал теорему об инвариантности числа измерений при взаимнооднозначных непрерывных отображениях, теорему о неподвижной точке. Известны Брауэра группа (в алгебре), принцип Брауэра (в функциональном анализе), брауэровы многообразия в алгебраической топологии. Трудности, связанные с теоретико-множественными концепциями современной математики, привели Брауэр к коренной критике логических основ математики, в частности к применению закона исключенного третьего в математических доказательствах и созданию философско-математического направления — интуиционизма. Брауэр одним из первых оценил созданную П. С. Урысоном теорию и содействовал ее популяризации.
Брауэр Лейтзен Эгберт Ян
Брауэр (Brouwer) Лейтзен Эгберт Ян (27.2.1881, Оверсхи, — 2.12.1966, Амстердам), голландский математик, член Нидерландской АН в Амстердаме (1912), член-корреспондент Парижской и Геттингенской АН, профессор Амстердамского университета (1912—51). С 1908 Б. последовательно проводил критику т. н. чистых математических доказательств существования, опирающихся на логичность исключенного третьего принцип, что в конечном счете положило начало целому направлению в обоснованиях математики — математическому интуиционизму. Но независимую от философии интуиционизма ценность имеет проведенный Б. анализ математических доказательств существования с точки зрения конструктивного построения тех объектов, существование которых доказывается. В частности, А. Н. Колмогоровым было показано, что правила так называемой интуиционистской логики находят свое реальное осуществление в логике конструктивного решения математических проблем. В 1911—13 Б. установил ряд важных понятий и результатов в области топологии. В их числе: понятия симплициальной аппроксимации и степени непрерывного отображения; понятие гомотопической классификации отображений; теорема о гомотопической эквивалентности двух отображений (сферы на себя), имеющих одну и ту же степень; теорема об инвариантности числа измерений и инвариантности внутренних точек (при топологическом отображении множества, лежащего в n-мeрном пространстве, в это же пространство); теорема о неподвижной точке, n-мeрная теорема Жордана и др. Эти результаты и методы, найденные для их доказательства, определили значительное влияние Б. на развитие топологии в период между 1-й и 2-й мировыми войнами.
Лит.: Александров П. С., Комбинаторная топология, М. — Л., 1947; Вейль Г., О философии математики. Сб. работ, пер. с нем., М. — Л., 1934 (см. раздел: О новом кризисе основ математики).
Аренд Гейтинг (9 Мая, 1898 – 9 Июля, 1980) голландский математик и логик, студент и последователь Л. Э. Я. Брауэра член Нидерландской АН. Окончил Амстердамский университет (1922). Работал там же (с 1948 г. – профессор). Исследования посвящены основаниям математики. Один из виднейших представителей интуиционизма после Брауэра, опубликовал работу с изложением формальных правил интуиционистской логики высказываний. Интуиционистская логика стала частью математической логики.
Он родился в Амстердаме, Нидерланды, и умер в Лугано, Швейцария.
Аренд ГЕЙТИНГ (1898--1980)
Известный голландский математик и логик. Родился в Амстердаме, в семье школьного учителя. Окончил в 1922 г. Амстердамский университет. Ученик и последователь известного голландского математика, основоположника интуиционизма Л. Э. Я. Брауэра, под руководством которого в 1925 г. успешно защитил докторскую диссертацию. Работал учителем математики в средней школе, одновременно занимаясь математическими исследованиями (в 1928 г. был удостоен премии Голландской математической ассоциации). С 1936 г. работает в Амстердамском университете; с 1948 г. до выхода на пенсию в 1968 г. -- профессор этого университета. Член Нидерландской академии наук.
Исследования А. Гейтинга были посвящены основаниям математики. Он стал одним из виднейших после Брауэра представителей интуиционизма - системы философских и математических идей и методов, связанных с пониманием математики как совокупности "интуитивно убедительных" умственных построений. Продолжая развивать это направление в математике, А. Гейтинг изложил формальные правила интуиционистской логики высказываний, построил двузначную символическую логику. Во многом благодаря его работам интуиционистская логика стала частью математической логики.
29-04-2015, 02:53