Неоевгеника – история становления, основные направления, перспективы развития.
Введение.
Врачебная практика испокон веков основывалась не только на знании определенных биологических, антропологических, физиологических законов, но и на определенных моральных принципах, главный из которых - «Не навреди». Сегодня новые технологии, с одной стороны, неизмеримо расширяют возможности человека, а с другой - ставят нас перед ситуациями, которые выходят за рамки морального опыта человечества. Человеку приходится делать непростой и чрезвычайно ответственный выбор, который определяет судьбу либо его самого, либо его родственников. В связи с этим вопрос о нравственности знания и его применения встал с небывалой остротой.
Факторы становления неоевгеники. История становления генетики.
Различные отвлеченные представления о наследственности и изменчивости высказывались еще античными философами и врачами. В большинстве своем эти представления были ошибочными, но иногда среди них появлялись и гениальные догадки. Так, римский философ и поэт Лукреций Кар, суммируя все воззрения Демокрита и Эпикура, поведал, в своей знаменитой поэме «О природе вещей»:
о «первоначалах» (наследственных задатков), определяющих передачу из поколения в поколение признаков от предков к потомкам, и происходящем при этом случайном комбинировании («жеребьевке») этих признаков, отрицая возможность изменения наследственных признаков под влиянием внешних условий.
Однако научное познание наследственности и изменчивости началось лишь спустя столетия, когда было накоплено множество точных сведений о наследовании различных признаков у растений, животных и человека.
Число таких наблюдений, проведенных преимущественно практиками-растениеводами и животноводами, особенно возросло в период с середины 18 до середины 19 века. Наиболее ценные данные были получены И. Кельрейтером и А. Гертнером (Германия), О. Сажрэ и Ш. Ноденом – «Генетические и конституциональные факторы» (Франция), Т. Найтом (Англия). На основании межвидовых и внутривидовых скрещиваний растений они обнаружили ряд важных факторов, касающихся усиления разнообразия признаков в потомстве гибридов, преобладания у потомков признаков одного из родителей.
Сходные обобщения сделал во Франции П. Люка (1847-1850), собрав обширные сведения о наследовании различных признаков у человека.
Тем не менее, четких представлений о закономерностях наследования и наследственности вплоть до конца 19 века не было.
Делалось немало попыток выяснить, как передаются признаки наследственности из поколения в поколение.
Молекулярно-генетический подход. Современное развитие эволюционной теории Ч. Дарвина.
Появление эволюционных теорий Ж. Б. Ламарка, а затем Ч. Дарвина во второй половине 19 века усилило интерес к проблемам изменчивости и наследственности, т. к. эволюция возможна только на основе возникновения у живых существ изменений и их сохранения у потомков.
Социальный дарвинизм провозгласил закономерности биологической эволюции, принципы естественного отбора в качестве определяющих факторов общественной жизни. Основная идея этого направления сводится к тому, что в основании социальной структуры лежат природные способности человека, а все социологические положения должны находиться в соответствии с естественными законами.
Ч. Дарвину, в главных его работах: «Происхождение видов путём естественного отбора» (1859 г.), «Изменение домашних животных и культурных растений» (1868 г.), «Происхождение человека и половой отбор» (1871 г.), удалось раскрыть такие факты, которые при их обобщении, как оказалось, имеют универсальное значение. Идея эволюции, а также исторический метод были взяты на вооружение всем естествознанием.
Представления о роли изменчивости и отбора в становлении новых форм живого претерпевали изменения с течением времени. В настоящее время различают три типа изменчивости:
Наследственная изменчивость – это изменчивость, обусловленная возникновением новых генотипов (аналог «неопределённой изменчивости» Ч. Дарвина).
Ненаследственная изменчивость – это изменчивость, которая отражает изменения не генотипа, а фенотипа под влиянием условий внешней среды (аналог «определённой изменчивости» Ч. Дарвина).
Онтогенетическая изменчивость – это изменчивость, отражающая изменения в ходе индивидуального развития всего организма (онтогенеза).
Современный эволюционизм – это не только дарвинизм в его изначальном виде, а многогранное комплексное учение, сформировавшееся за годы, прошедшие со времён создания теории Ч. Дарвина. В 1930-1940 годах появилась на свет новая синтетическая теория. Она представляла собой синтез дарвинской концепции естественного отбора с генетикой и экологией.
Существует два основных отличия синтетической теории эволюции от теории Ч. Дарвина. Это, во-первых, признание в качестве элементарной единицы эволюции не организма и даже не вида, а местной популяции и, во-вторых – выделение двух типов эволюции: микроэволюции и макроэволюции.
Микроэволюция обозначает совокупность эволюционных процессов в популяциях сопровождающих изменением генофонда и образованием новых видов она доступна для непосредственного изучения в лабораторных условиях. Изучение микроэволюции возможно посредством наблюдения за изменениями животных и растений в природе.
Макроэволюция (или филогенез) – это эволюционные преобразования, протекающие в течение длительного исторического периода и приводящие к образованию надвидовых таксонов. Изучение макроэволюции в лабораторных условиях невозможно, вследствие её исторической протяжённости. Филогенез требует дополнительных источников исследования. Такие данные предоставляли дополнительные смежные дисциплины: сравнительная морфология, палеонтология и эмбриология.
В настоящее время учёные перешли на изучение эволюционных процессов на молекулярно-гинетическом уровне. Объектами изучения учёных стали белки и нуклеотиды, изъятые как из ныне живущих организмов, так и из геологических слоёв залегания ископаемых. Главной проблемой макроэволюции является расшифровка последовательности филогенеза и наследственных связей между организмами. Эта наука развивается, достижения в этой области знаний непосредственно связаны с прогрессом в области молекулярной биологии и генетики.
І. Открытия, сделанные в области молекулярной биологии и молекулярной генетике.
1. Открытие генетической роли нуклеиновых кислот.
Начало генетике как науке было положено чешским учёным
Г. Менделем, который скрещивал между собой различные сорта гороха и наблюдал за изменениями их окраски, формы, вида и других признаков. Мендель установил, что у получаемых гибридов в первом поколении одни признаки подавляют другие. Каждому из наследуемых признаков Мендель поставил в соответствие материальную частичку живого, передаваемого из поколения в поколение, - элементарную носительницу информации, и назвал её геном. Изучая поведение и характер взаимодействия генов по их проявлению в потомстве, Мендель открыл свои знаменитые законы скрещивания генов и сделал доклад в 1865 на собрании Брюнского общества естествоиспытателей и, напечатанный на следующий год в трудах этого общества. Но в течение почти 35 лет в мире не было, ни одного учёного, который мог бы по достоинству оценить работу учёного и продолжить его исследования. Они были «настолько хорошо забыты наукой», что в 1900 году три исследователя – де Фриз в Голландии, Корренс в Германии и Чермак в Австралии, проводя свои исследования по делению клеток, вторично, не зависимо друг от друга, открыли законы Менделя. Их поразило сходство его результатов с результатами, полученными ими. Но, не смотря на то, что обнаружив позже статью учёного, они уступили приоритет открытия законов наследственности их первооткрывателю – Менделю, датой рождения генетики принято считать 1900 год.
Дальнейшее развитие генетики связано с рядом этапов, каждый из которых характеризовался преобладающими в то время направлениями исследований. Границы между этими этапами в значительной мере условны – этапы тесно связаны друг с другом, и переход от одного этапа к другому становился возможным благодаря открытиям, сделанным в предыдущем.
В начале XX века было установлено, что описанные Менделем генетические факторы находятся в хромосомном клеточном ядре.
Параллельно с генетиками биохимики изучали химический состав ядер живых клеток. Впервые молекулы ДНК были выделены из ядер живых лейкоцитов швейцарским биохимиком Ф. Мишером во второй половине прошлого века. Имя Мишера прославила и увековечила в истории науки его статья, опубликованная в 1871 голу в «Журнале медицинской химии», издававшемся в Берлине. Именно в ней он описал выделение «нуклеина» из клеток гноя – лейкоцитов и лимфоцитов. Название новому веществу Иоганн образовал от латинского «нуклеус», которое означает ядро (орех), поскольку вещество действительно выделялось из клеток ядра.
А. Коссель обратился к нуклеину Мишера и, начиная с 1855 года, за шесть лет выделил и определил структуру четырёх оснований кислой фракции Мишера. Он обнаружил, что в состав нуклеиновых кислот входят пуриновые и пиримидиновые основания, а также простейшие углеводы. Химиков уже не удивлял тот факт, что в биополимерах кислое и щелочное «уживаются» бок обок. Гуанин Коссель назвал «сарцином», поскольку его много в «саркосе» - мясо по-гречески. Аденин он нашёл в большом количестве в желтке яиц. Сахар тимусной кислоты, в отличии от рибозы, содержащий на одну молекулу кислорода меньше стали называть «безкислородным», или дезоксирибозой. Так родились известные теперь всему миру – ДНК и РНК. Коссель выделил также из хроматина различных тканей белок со щелочной реакцией – «гистон». Из гистона он выделил аминокислоты гистидин, тирозин и лизин. Так, прямо в лаборатории, рождалась научная терминология современной биологии. Косселя по праву считают создателем физиологической химии. Коссель за исследование нарушения нуклеино-кислотного обмена и отложения оснований ДНК и РНК в суставах при подагре был награждён Нобелевской премией.
А далее в дело вступил Фебус Теодор Левин, учёный от бога, которого считают американским биохимиком, на самом деле, он уроженец России. В начале 1900 года в лаборатории П. Левина в США был расшифрован углеводный компонент этих нуклеиновых кислот.
Был определён порядок расположения частей нуклеотида – мономера нуклеиновых кислот, а также места присоединения основания и фосфора к сахарному кольцу. Левен и немец Фёльген опубликовали цепочную схему строения нуклеиновых кислот, историческая правда заключается в том, что цепь была одна. Фёльген сделал в 1914 году самое большое открытие, но оно оказалось не востребованным из-за начавшейся войны.
Сугубо химическая реакция Фёльгена с использованием анилинового красителя фуксина из каменноугольной смолы приводила к тому, что тимусная кислота (ДНК) давала характерное тёмно-розовое окрашивание, в то время как дрожжевая (РНК) – нет. Если бы тогда коллеги обратили на это удивительное открытие внимание, природа гена могла быть открыта на три десятилетия раньше.
В установлении роли ДНК в клетках также было несколько этапов. Особенно усиленно разработкой этого вопроса занимались американские учёные О. Эвери, К. Мак-Леоду и М. Мак-Карти. В 1944 году им удалось установить, что свободная молекула ДНК обладает трансформирующей активностью, т.е. способностью переносить свойства одного организма к другому. Это было революционное открытие, родившее новую науку, изучавшую вопросы наследственности на молекулярном уровне. Центральное место в этой науке отводилось исследованию роли ДНК. ДНК, являясь «хранительницей» материальной основы генетической информации контролирует биосинтез белка в клетках и отвечает за изменчивость клеток. Именно молекула ДНК отвечает за передачу наследственной информации от одной клетки к другой.
2. Открытие молекулярных механизмов генетической репродукции и биосинтеза белка.
Рождение новой науки – молекулярной генетики связывают с опытами двух американцев Дж. Билда и Э. Тэйтума. В 1941 году они установили прямую связь между состоянием генов (ДНК) и синтезом ферментов (белков). Появилась знаменитая фраза: «Один ген – один белок».
Позже было выяснено, что основной функцией генов является кодирование синтеза белка. В 1952 году Дж. Билд, Э. Тэйтум и Дж. Ледерберг были удостоены Нобелевской премии за эти исследования.
А в 1962 году Нобелевская премия была присуждена Ф. Крику и Дж. Уотсону за установление молекулярного строения ДНК.
На повестку дня был вынесен новый вопрос, каким образом записана генетическая программа и как она реализуется в клетке.
Согласно модели Уотсона – Крика генетическую информацию ДНК несёт последовательность расположения четырёх оснований: А, Т, Г, Ц. Необходимо было выяснить, как всего четыре основания могут кодировать порядок расположения в молекулах белка целых двадцати аминокислот.
Решил эту, казалось бы, неразрешимую задачу русский по происхождению американский физик-теоретик Г. Гамов. Он предложил для кодирования одной аминокислоты использовать сочетание из трёх нуклеотидов ДНК. Эта элементарная частица наследственного материала, кодирующая одну аминокислоту, получила название «кодон».
В 1961 году гипотеза Г. Гамова была подтверждена американским экспериментальным исследователем Ф. Криком и др.
Так был расшифрован молекулярный механизм считывания генетической информации с молекулы ДНК при создании белков.
3. Изучение молекулярных основ обмена веществ.
Существует три типа обмена веществ (метаболизма): катаболизм или диссимиляция, амфоболизм, анаболизм или ассимиляция.
Все три типа метаболизма к настоящему времени полностью расшифрованы. Не последнюю роль сыграла при этом фундаментальная для всего естествознания идея единства состава и механизмов функционирования живой природы независимо от уровня организации, представляющих её структуру. Эта идея получила название концепция биохимического единства и возникла ещё во второй половине прошлого века, но получила своё распространение благодаря голландским микробиологам А. Клюйверу и Г. Донкеру в 1926 году.
В настоящее время накоплен богатый фактический материал о том, каким образом осуществляется регулировка метаболизма в клетках. Изучается специфика биокатализа (ферментного катализа) и разрабатываются теоретические механизмы действия различных ферментов. Открыты так называемые аллостерические ферменты, в которых имеется два центра связывания с молекулами, т.е. вещество, вступающее в данную реакцию, а другое вещество – распознающий конечный и промежуточный продукт реакции. Второй центр, связываясь с продуктом реакции, изменяет свою конформацию (пространственную структуру), что влияет на скорость биокатализа. Поэтому эти ферменты названы ещё иначе: регулирующие ферменты или эффекторы.
Невозможно перечислить все достижения в области регуляции метаболизма клеток. Эта область постоянно развивается и пополняется новыми научными открытиями, каждое из которых не перестаёт удивлять совершенством механизмов регуляции процессов обмена веществ , осуществляемых на макромолекулярном уровне.
4. Открытие молекулярно-гинетических механизмов изменчивости.
На молекулярно-генетическом уровне существует несколько механизмов изменчивости. Среди них – мутации генов – механизм непосредственного преобразования самих генов, находящихся в конкретной хромосоме при сильном внешнем воздействии. При этом механизме порядок расположения генов в хромосоме не изменяется.
К другому типу механизмов можно отнести рекомбинацию генов, располагающих в конкретной хромосоме. При этом сами гены не изменяются, а происходит перемещение генов с одного участка хромосомы на другой или же обмен генами между двумя хромосомами. Это так называема классическая рекомбинация генов, которая имеет место главным образом у высших организмов при половом размножении. При этом общий объём генетической информации остаётся неизменным.
Однако, существует ещё один тип изменчивости генов – нереципрокная рекомбинация или неклассическая рекомбинация генов, при которой происходит увеличение общего объёма генетической информации. Этот тип изменчивости возникает за счет включения в геном клетки новых, привнесённых извне генетических элементов, которые носят название трансмиссивные (переносимые) генетические элементы.
Начало изучения этого механизма изменчивости было положено в 1952 году, когда П. Ледерберг и Н. Циндер открыли явление трансдукции (латинское - Перемещение) генов. Суть этого явления состоит в возможности переноса молекул ДНК не в «голом виде», как при трансформации, а в составе вирусов бактерий.
В последнее время этот вид рекомбинации был тщательно изучен. Было обнаружено несколько трансмиссивных генов, различающихся структурой генома и способом связывания с хромосомой клетки-хозяина. Среди них – плазмиды – сложные генетические элементы в виде двухцепочной кольцевой ДНК, широко распространённые в клетках живых организмов, в том числе и высших.
Это самые активные переносчики генетической информации. Именно им мы «обязаны» тем, что после длительного использования каких-либо лекарств, наступает «привыкание» к этим лекарствам. Патогенные бактерии, с которыми мы боремся медикаментозным путём, связываются плазмидами, придающими этим бактериям устойчивость и новое лекарство перестаёт действовать на бактерии, они на него не реагируют. Мигрирующие генетические элементы могут вызывать как структурные перестройки в хромосомах, так и мутации генов.
Эти проблемы были затронуты известным генетиком В.П. Эфроимсоном. Так его исследования описывал в журнале «Наука и жизнь» в конце 1974 года Б. Медников:
«В.П. Эфроимсон после тщательного анализа множества фактов создал стройную теорию возникновения многообразия (полиморфизма) генных комплексов у человека. Согласно Эфроимсону, главную роль в этом играет отбор в системе «паразит – хозяин». Вирусы и бактерии, паразитические простейшие, вроде малярийного плазмодия, а также (да простит читатель!) гельминты в разных конкретных условиях проводили у разных популяций человека селекцию тех или иных форм гена. Инфекционные болезни – мощный фактор отбора, способный широко распространить мутантный ген».
Возникла новая наука – генная инженерия, целью которой стало создание новых форм организмов, в том числе и высших, наделённых свойствами ранее у них отсутствующих.
Теоретическую основу этой науки составляет создание рекомбинантных (гибридных) молекул с новыми (нужными) свойствами.
Наука вторглась в самое святое – создание новых живых организмов и научилась управлять этим процессом.
ІІ. Становление неоевгеники как науки.
Предпосылкой становления неоевгеники («позитивной евгеники») была евгеника. В отличие от евгеники, которая представляла проекты реконструкции генной структуры человека с целью улучшения породы человека, неоевгеника пытается найти опору в идее «всепоглощающей» заботы о человеке и человечестве, о достоинстве и будущем человечества.
Так, в трудах Мёллера есть программа планируемой евгеники, которая дает возможность «неограниченного прогресса генетической конструкции человека, соответствующего его культурному прогрессу».(3) Это должно стать дополнением к идее формирования нового человека социалистического типа, так сказать, биологическое ускорение решения этой проблемы. История неоевгеники началась ещё в XIX веке, когда Ф.Гальтон ввёл термин «евгеника».
2.1. Принципы евгеники
Сэр Френсис Гальтон (1822-1911), один из оригинальных философов второй половины XIX – начала XX века. Двоюродный брат
Ч. Дарвина. У них был один дед Эразм Дарвин, который считал, что развитием-эволюцией органического мира управляет «невидимая рука», не уточняя, правда, чья. Гальтон, изучив географию, этнографию, метеорологию во время путешествий в Африке, Судане, Испании и добившись определённых успехов в этих науках, он поставил цель приложить математику ко всем явлениям жизни – от биологии
8-09-2015, 19:30