Пчелиный яд

Реферат по организации живого уголка выполнил: ст. гр. БЗ-01-3 Сподарец Дмитрий Александрович

ДНЕПРОПЕТРОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

г. Днепропетровск 2002

1. Получение пчелиного яда на пасеках. Электpостимулятоpы

В настоящее время существует большое количество разнообразных конструкций электрических стимуляторов пчелоужаления. Однако все они в принципе сходны и удовлетворяют основным условиям промышленного получения пчелиного яда: наличию возможности одновременного отбора яда у большого количества пчел при сохранении их живыми.

Анализ выпускающихся сегодня разнообразных конструкций таких электростимуляторов позволяет сделать вывод, что все они однотипны и так или иначе повторяют схему серии НИИХ (НИИ химии при университете), опубликованную около 20 лет назад (Солодухо с соавт., 1977, 1978) и в дальнейшем усовершенствованную (Ошевенский с соавт., 1985).

Отличие же всех разнообразных приборов сегодня заключается в основном, в сервисе аппарата: предусматриваются автоматические или ручные режимы управления формой, частотой, амплитудой выходного сигнала, его временем работы, включения и выключения; световая и звуковая индикация работы и т.д.

Соответственно, усложнение сервиса ничего принципиально нового, кроме уменьшения надежности, в принцип работы не вносит. В связи с этим, дальнейшая оптимизация электрического стимулятора для пчел может быть достигнута за счет упрощения, удешевления и унификации элементной базы, позволяющей собрать такой прибор самостоятельно. В качестве примера такой оптимизированной схемы электростимулятора, разработанного и апробированного на пасеках, ниже приведена схема прибора, позволяющего обрабатывать небольшую приусадебную пасеку в 5-15 пчелосемей.

На рисунке приведена схема, апробированная в лаборатории и на пасеках, выполненная на недефицитных элементах, выпускающихся промышленностью. Основным элементом схемы является задающий генератор электрического сигнала, выполненный по схеме мультивибратора на микросхемах (элементы D1.3, D1.4, R3, С2). Генератор вырабатывает сигнал прямоугольной формы частотой 1000 Гц±200 Гц при скважности 2. Элементы R3, С2 являются времязадающими и определяют конкретную частоту генерации. Для формирования пакетов (пачек) импульсов и пауз между ними задающий генератор управляется вторым генератором, выполненным по той же схеме (элементы D1.1, D1.2, VD1, R1, R2, С1). Этот генератор вырабатывает импульсы длительностью 0,5-1 с. с частотой следования 0,5-0,3 Гц. Регулировка длительности пачки импульсов осуществляется резистором R1, регулировка пауз между пачками — резистором R2.

Сформированный на генераторах сигнал усиливается на транзисторах VT1, VТ2, VТЗ, VТ4 с высоким КПД. Для согласования усилителя мощности с электродами ядоприемников на его выход подключен автотрансформатор Т1 (Ш 16х16; I-50 витков ПЭВ-2, d 0,44; II — 300 витков), повышающий выходное напряжение до требующихся 25-35 В. Дополнительные элементы R4, VD2, П1, обеспечивают световой и звуковой контроль работы устройства. Испытания показали, что в режиме паузы потребляемый ток составляет 1 мА, при максимальной нагрузке — 150 мА, ток короткого замыкания — 300 мА, нагрузочная способность без потери мощности — 1000 Ом. Питание прибора осуществляется аккумулятором (12 В), или любым стабилизированным источником постоянного тока указанного напряжения.

Как видно из приведенного описания и схемы, принцип действия такого оптимизированного электростимулятора для получения пчелиного яда, так же, как и всех известных сегодня разновидностей, заключается в выработке импульсного электрического сигнала определенной частоты, причем импульсы сгруппированы в пачки, между которыми имеются паузы молчания.

Соответственно, можно варьировать все указанные параметры — величину и форму импульсов, их частоту, длительность пачек и пауз между ними — в широких пределах. Каких? В приведенном стимуляторе "Жало" эти параметры подобраны и зафиксированы. В других приборах они могут регулироваться как самим оператором, так и автоматически. Почему мы считаем выбранные уровни параметров оптимальными? Во-первых, потому, что в течение двух десятков лет производился опытный подбор указанных параметров раздражения, который оценивался, с одной стороны, по количеству получаемого яда, а с другой — по щадящему воздействию на пчелу. Во-вторых, что было сделано сравнительно недавно, получены теоретические подтверждения оптимальности выбранных характеристик раздражения. Подобранные опытным путем, они оказались соответствующими физиологическим характеристикам пчелы.

Рассмотрим это более детально. Прежде всего, необходимо принять к сведению, что организм пчелы в анатомическом, биохимическом и фрункциональном (поведенческом) аспектах не отличается от других организмов. Поэтому все физиологические законы, присущие живому организму, распространяются и на пчелу. Так же, как и другие животные, пчела имеет центральную и периферическую нервную системы, мышцы, которыми эти системы управляют. Управляющие команды нервной системы регулируются в свою очередь сигналами, приходящими по чувствительным нервным путям от рецепторов, находящихся повсеместно —внутри и на поверхности организма. В связи с этим управляющие команды будут приводить к действию, адекватному изменению условий внешней или внутренней среды, направленному на поддержание или обретение "комфортного" состояния организма.

Рассмотрим пример. Если несильно каким-либо предметом надавить на тело пчелы, она будет поднимать лапки, крылья. Если давление усилить — пчела попытается улететь. Наконец, сильное надавливание приведет к высовыванию жала и попытке ужалить. Все эти реакции — инстинктивные сложные рефлексы, вроде того, когда после удара молоточком терапевта по коленному сухожилию у человека отдергивается голень. Из примера следует, что данные рефлексы и соответствующие реакции градуальны и зависят от силы раздражающего действия, то есть пчела будет жалить только при достижении определенной, пороговой силы раздражителя.

Кроме того, для более четкого ответного рефлекса важна и природа самого раздражителя. Выше мы уже отмечали, что при получении яда наиболее эффективным оказалось не механическое или химическое, а электрическое раздражение, поскольку и нервы и мышцы (возбудимые ткани) функционируют благодаря биоэлектрическим процессам, протекающим в них. При этом активность носит импульсный характер! Если эти импульсы нервных волокон усилить и подать на экран осциллографа, то можно увидеть весь спектр этой активности — от полного молчания, до низко амплитудной фоновой (дежурной) активности и высоко амплитудных импульсов, сформированных в пачки при возбуждении нерва.

В связи с вышерассмотренным становится понятным, почему не получил распространения в качестве раздражителя постоянный ток, изучавшийся ранее. Установлено, что постоянный ток, т.е. ток, величина и направление которого постоянны (например, от аккумулятора), будет вызывать ответ возбудимых тканей только в момент включения и выключения. Кроме того, проходя по тканям, он вызывает их разогрев, различные электрохимические процессы (перенос заряда), соответственно, разрушение тканей. В экспериментальных условиях показано, что при получении пчелиного яда с помощью постоянного тока наблюдается большая гибель пчел: у погибших пчел отмечаются характерные позы — челюстями они сжимают проволочные электроды ядоприемников, крылья расправлены в стороны, хоботки расправлены. Это регистрировалось, когда постоянный ток достигал значительной величины — при малой же (до 20 В) он был неэффективен, ужаления не происходят.

Логично предположить, что более адекватной будет раздражение, наносимое в режиме импульсов, причем частота этих импульсов также должна соответствовать физиологической частоте. Установлено, что нервная цепочка насекомых обладает фоновой биоэлектрической активностью, т.е. некоторым постоянным фоном низко амплитудных потенциалов (импульсов), имеющим частоту 500-700 импульсов в секунду (Верещагин, Лапицкий, 1982 и др.). Более того, такая фоновая активность наиболее выражена в грудных и последнем брюшном ганглии насекомых, где сосредоточены локомоторные центры, обслуживающие половые органы, и, следовательно, жалящий аппарат пчел. Из этих данных следует, что оптимальная частота электрических импульсов раздражения пчел должна лежать в интервале 500-1000 Гц.

Опытным путем показано, что наиболее эффективна частота в 1000±200 Гц.

При возбуждении фоновая активность усиливается, появляются пачки высоко амплитудных импульсов, что в конечном итоге приведет к ответу иннервируемой ткани или органа. Эти законы хорошо изучены у человека и животных, они же характерны и для пчел. Переход ткани или органа из состояния физиологического покоя в состояние физиологической активности под влиянием раздражителя произойдет, если последний будет иметь некоторую минимальную пороговую силу-порог раздражения. Стимулы, сила которых ниже пороговой, не вызывает реакции организма.

Порог раздражения находится в зависимости от длительности стимула и крутизны его нарастания. Чем медленнее нарастает величина электрического раздражителя, тем выше становится порог, при котором возникает реакция на раздражение (явление аккомодации). Наоборот, мгновенно нарастающий стимул вызовет реакцию ткани при меньшей величине. Поэтому наиболее эффективными оказались электростимуляторы, у которых передний фронт (крутизна) импульса наиболее короток — генераторы прямоугольных импульсов. Длительность такого прямоугольного стимула (импульса) обычно составляет 0,5-1 мс, что также соответствует длительности биоэлектрических импульсов возбудимых тканей животных — у насекомых она не превышает 4 мс.

Выше мы указывали, что при возбуждении импульсная активность нервных волокон становится залповой — появляются пачки высоко амплитудных импульсов. Это свойство — одиночные и залповые импульсы, — становится особенно важным, когда объект раздражения — мышцы. Дело в том, что при одиночном стимуле даже большой силы мышца отвечает одиночным сокращением. Однако, если на мышцу подать пачку импульсов определенной частоты, то мышца отвечает суммированным, слитным сокращением, гораздо большим по величине, чем одиночное сокращение. Только благодаря таким титаническим сокращениям и происходит целенаправленное локомоторное действие мышечного аппарата организма — поднимается или опускается конечность, удерживается в необходимой позе часть тела и т.д. Соответственно, более полно и мощно сократятся мышцы, опорожняющие ядовитый резервуар пчелы при ужаливании. Такое титаническое сокращение произойдет, если частота следования импульсов в пачках составляет не менее 500 Гц.

С другой стороны, для более полного выброса яда из мышечного резервуара, мышцы его стенок должны работать в режиме насоса — периодическом сокращении и ослаблении. Соответственно, должны быть предусмотрены интервалы молчания (паузы) между пачками импульсов. Пауза между пакетами импульсов должна быть не менее времени полного расслабления мышечных структур —только в этом случае мышцы избавятся от остаточной посттетанической контрактуры и сократятся более мощно при следующих стимулах. В соответствии с расчетными данными и экспериментальными результатами длительность пачек стимулов и пауз между ними примерно одинакова и составляет 0,5-1 с. Именно такая продолжительность достаточна для того, чтобы вызвать полноценное титаническое сокращение и последующее полное расслабление мышц жалящего аппарата пчел.

В соответствии с выбранной оптимальной длительностью отдельных стимулов, оказалась оптимизированной и амплитудная, пороговая характеристика их. При вышеуказанных параметрах длительности и формы импульсов оптимальная амплитуда их составила 25-35 В. Эта величина оказалась вполне достаточной для полного опорожнения ядовитого резервуара пчел. Вместе с тем при указанных режимах стимуляции существует достаточный диапазон амплитуды, не наносящий ущерба жизни пчел: лишь при достижении величины в 80 В возникает паралич конечностей, сопровождающийся гибелью пчел на электродах.

В условиях пасеки было подтверждено, что повышение амплитуды импульсного тока выше 35 В не приводило к дальнейшему увеличению ядоотдачи. Не было также выявлено отличия между действием импульсов однополярной или биполярной направленности. Одинаковый выход продукта как по количеству, так и по качеству был показан при стимуляции прямоугольными импульсами и монополярного и биполярного направления.

Исследования по оптимизации раздражения пчел при отборе яда привели тому, что, кроме учета физиологических особенностей возбудимых тканей насекомых, необходимо учитывать и обще поведенческие реакции организма, как условно-рефлекторные, так и инстинктивные. Дело в том, что выявленные выше амплитудные, частотные и временные характеристики электростимуляторов имеют ритмический (периодический) характер, т.е. имеют повторяемость эффективных значений раздражающего тока, временных интервалов пакетов и пауз раздражающих импульсов. Такая ритмичность приводит к появлению у пчел эффекта привыкания к раздражителю, следствием чего является снижение эффективного значения тока в цепи электродов ядоприемника во времени (пчелы уходят с ядоприемников). Экспериментально было показано, что такое привыкание появляется на 40-60 минутах работы электростимуляторов.

Таким образом, при работе стандартного электростимулятора уже на 40 минуте, в результате привыкания и ухода пчел с электродов, в 2 раза снижается производительность ядоотбора.

2. Ядоприемники

Вторым основным элементом технологии получения яда у пчел являются соединенные с электростимуляторами ядоприемники, т.е. те площадки с электродами, жаля которые, пчелы оставляют на них яд.

При рассмотрении разнообразия Конструкций ядоприемников можно выделить основной принцип: это прямоугольный каркас из пластика, дерева и других материалов, на который намотаны параллельно два провода-электрода с расстоянием между ними 3-5 мм имеющие выводы на контакты выхода электростимулятора.

Замыкание цепи работающего электростимулятора происходит при касании пчелой двух соседних проводов-электродов. Внутри каркаса под проводами-электродами располагаются 1-2 стеклянные пластины по размеру каркаса. Именно на них попадает выделившийся с жала яд. Для уменьшения примесей, попадающих на стекло-ядоприемник при нахождении пчел над ними на электродах, стекла иногда закрывают различными полимерными пленками (лавсан, латекс, капрон и др.). Однако для использования яда для фармацевтических нужд в таких усложнениях обычно нет необходимости. При грамотно воспроизводимой технологии даже на открытом стекле нерастворимых в воде примесей обычно не бывает более 8-10% (Фармакопейная статья на яд-сырец допускает 12% примесей).

Стандартную рамку-ядоприемник несложно изготовить самим в условиях пасеки из дерева (дуб, бук, сосна). Готовят 2 бруска длиной 470 и 435 мм. С внутренней стороны обоих брусков делают продольные пазы шириной 10 мм, глубиной 5 мм. Внутри пазов, также по длине брусков, делают еще один пропил глубиной 5 мм и шириной 2-3 мм (толщина определяется толщиной основной пластины. С наружной стороны брусков делают неглубокие (1 мм) надпилы, ориентированные перпендикулярно длине брусков на расстоянии 3-5 мм друг от друга. В глубокие пазы верхнего и нижнего брусков вставляют прочную основную пластину толщиной 2-3 мм (металл, пластик, стекла и др.) шириной 400 и высотой 200-300 мм. Вокруг собранного таким образом каркаса натягивают (обвивая) двойной спиралью нихромовую проволоку диаметром 0,2-0,4 мм, располагая ее в пропилах. Концы обеих спиралей закрепляются в каркасе так, чтобы к ним можно было присоединить два провода с выхода электростимулятора. Внутрь каркаса, под провода-электроды в пазы брусков по обе стороны от основной пластины вставляются два стекла соответствующей толщины (чтобы вошли свободно в пазы) и размера (по размеру каркаса).

В последнее время получили распространение кассеты-ядоприемники. От вышерассмотренных конструкций кассеты отличаются величиной каркаса, в который можно вставить между намотанными на различных опорах проводами-электродами 5-20 стекол ядоприемников. Обычно такой каркас-кассета выполнен по размеру улья и ставится сверху вместо магазина.

Существует множество вариантов расположения рамок-ядоприемников и кассет по отношению к улью. Возможны варианты их расположения перед ульем, сверху улья, в разрыв гнезда и т.д. При этом стекла ядоприемники, как и сами рамки, можно ставить вертикально, горизонтально, под тем или иным углом и т.д. С одной стороны, подобные варианты позволяют получать более чистый яд без примесей, но в малых количествах, с другой—большее количество яда, но с большим же количеством примесей. Поэтому определить, какой способ постановки более технологичен, можно, в зависимости от конкретных задач, условий, рентабельности и т.д.

3. Отбор яда у пчел

Существует несколько вариантов отбора яда во времени. Яд можно получать днем, вечером, ночью и утром. Чаще всего применяют ночной сбор с вечера, или утренний — еще до вылета пчел. У каждого способа имеются свои достоинства и недостатки. Рассмотрим наиболее длительный процесс сбора — ночной. Последовательность операций при этом будет производится следующим образом :

16-17 часов. В этот период в подготовленные днем ульи устанавливают рамки-ядоприемники. Для этого с улья снимается крышка, утеплитель, поднимается часть холстика с крайних медовых рамок, формируется, если он не сформирован нем, колодец. В “пазованный” колодец устанавливается рамка (кассета) — ядоприемник так, чтобы расстояние от проводов-электродов до стенок колодца — медовых рамок составили 20-25 мм.

Примечание. При большом расстоянии падает производительность сбора из-за недостаточного количества пчел на электродах, а при меньшем — создаются опасные для пчел условия их постоянного нахождения на электродах.

Холстик опускают на рамки, соединительные провода выводятся на внешнюю сторону улья. Аналогично устанавливают рамку-ядоприемник с другой стороны гнезда.

Примечание. Установлено, что при помещении в улье только одной рамки большое количество пчел уходит в противоположную сторону, и производительность, соответственно, уменьшается.

После проведенной установки рамок-ядоприемников улей закрывают крышкой без утеплителя. Это связано с тем, что в процессе ядоотбора в гнезде из-за возбуждения пчел резко повышается температура и создаются условия, которые могут привести к гибели расплода. Если, однако, перегрев все-таки происходит, то защитой является естественное выкучивание пчел из улья. Для уменьшения выкучивания и возможности перегрева при ядоотборе в крышке открывают вентиляционные окна, увеличивают просветы летков.

Вышеописанная процедура установки 200 рамок-ядоприемников (100 пчелосемей) двумя операторами обычно составляет 1,2-2 часа. Контроль работоспособности рамки-ядоприемника вновь производят, когда она установлена в улей. При подключении соединительных проводов к омметру сопротивление цепи ядоприемника должно быть не менее 500 кОм.

После установки всех рамок-ядоприемников они соединяются в параллельную цепь через тройники и удлинители. Образованная цепь соединяется с гнездами выхода электростимулятора.

21 час. Включают электростимулятор.

Примечание. Выбор длительности импульса и паузы между ними относительно постоянны и обуславливаются конструкцией электростимулятора. Их можно варьировать в узких пределах, причем конкретная величина может определяться самим пчеловодом-оператором опытным путем.

После включения электростимулятора необходимо убедиться в том, что процесс отбора яда начался. Нормальный процесс ядоотбора характеризуется повышенной акустической активностью пчелосемей: в улье слышен низкочастотный шум возбужденных пчел. Около вентиляционных отверстий ощущается характерный запах пчелиного яда. Кроме того, может наблюдаться высыпание, "выкучивание" пчел на стенки улья у сильных семей, что является нормальным явлением, длительностью 20-30 минут. Выкучивание пчелиной семьи является своеобразным индикатором, по которому можно корректировать процесс отбора яда.

Выкучивание пчел объясняется двумя основными причинами:

• повышением температуры в улье за счет высокой


8-09-2015, 20:28


Страницы: 1 2 3
Разделы сайта