РОЛЬ МИКРОЭЛЕМЕНТОВ
В ЖИЗНИ ЧЕЛОВЕКА.
Я знаю, люди состоят из атомов,
частиц, как радуги из светящих-
ся пылинок или фразы из букв.
Стоит изменить порядок, и наш
смысл меняется.
“Химия и жизнь” № 3 1985 г.
В организме человека и животных с помощью современных аналитических методов исследования обнаружено около 70 химических элементов. Эти элементы в зависимости от их биологического значения условно разделены на группы:
а) незаменимые элементы, входящие в состав ферментов, гормонов, витаминов, - O, K, H, Ca, P, C, S, CI, Na, Mg, Zn, Fe, Cu, I, Mn, V, Mo, Co, Se;
б)постоянно определяемые в животных организмах элементы, значение которых изучено еще недостаточно, - Sr, Cd, F, Br, B, Si, Cr, Be, Li, Ni, Cs, Sn, Al, Ba, Rb, Ti, Ag, Ga, Ge, As, Hg, Pb, Ti, Bi, Sb, U, Th, Ra;
в) обнаруживаемые в организме животных и человека элементы, в отношении которых данные о количественном содержании в тканях, органах и биологической их роли отсутствуют, - Tl, Nb, La, Pr, Sm, Tb, W, Re, Au.
Человек и животные получают микроэлементы из продуктов питания, воды и атмосферного воздуха.
Микроэлементы являются экзогенными химическими факторами, играющими значительную роль в таких жизненно важных процессах, как рост, размножение, кроветворение, клеточное дыхание, обмен веществ и др. Микроэлементы образуют с белками организма специфические металлоорганические комплексные соединения, являющиеся регуляторами биохимических реакций. В случае аномального содержания или нарушенного содержания или нарушенного соотношения микроэлементов в окружающей среде в организме человека могут развиться нарушения с характерными клиническими симптомами, главным образом в связи с нарушением функций ферментов, в состав которых они входят или их активируют. В результате нарушения функционирования одной или нескольких ферментных систем, вызываемого тем или иным этиологическим фактором, блокируя нормальный ход соответствующий ход соответствующих процессов обмена.
На современном этапе актуальность проблемы микроэлементов возросла в связи с нарастающим загрязнением среды такими химическими элементами, как свинец, фтор, мышьяк, кадмий, ртуть, марганец, молибден, цинк и др. Токсические вещества в процессе технологической переработки с газообразными, жидкими и твердыми промышленными отходами попадают в атмосферный воздух, воду и почву, что способствует формированию в городах и промышленных комплексах искусственных биогеохимических провинций. В связи с этим нарастает содержание многих химических элементов в воздухе, почве, природных водах, организме животных и растениях, используемых населением в качестве продуктов питания.
ФТОР ( самый активный, самый электроотрицательный, самый реакционноспособный, самый агрессивный элемент, самый-самый неметалл. Самый, самый, самый... )
Фтор и жизнь. Казалось бы, такое словосочетание не совсем правомерно. “Характер” у фтора весьма агрессивный: история его открытия напоминает детективный роман, где что не страница, то отравление или убийство. Сам фтор и его соединения неоднократно применялись для изготовления оружия массового уничтожения.
Работа с фтором опасна: малейшая неосторожность - и у человека разрушаются зубы, обезображиваются ногти, повышается хрупкость костей, кровеносные сосуды теряют эластичность и становятся ломкими.
И все-таки заголовок “ Фтор и жизнь” оправдан. Впервые это доказал ... слон. Обычный ископаемый слон, найденный в окрестностях Рима. В его зубах случайно был обнаружен фтор. Это открытие побудило ученых провести систематическое изучение химического состава зубов человека и животных. Оказалось, что в состав зубов входит до 0,02% фтора, который поступает в организм человека с питьевой водой. Обычно в тонне питьевой воды содержится 0,2 мг фтора. Обогащение фтором питьевой воды происходит в результате выветривания пород, содержащих фтор, а также за счет метеорных вод, вулканических и промышленных выбросов, а также обогащение может происходить из-за внесения в почву большого количества фторсодержащих удобрений и за счет выбросов промышленными предприятиями больших количеств фторсодержащих газообразных выбросов. В результате накопления фтора в почве повышается его содержание в питьевой воде и в растениях, что неблагоприятно сказывается на здоровье населения.
В суточном рационе содержится до 1,6 мг фтора. В ряде случаев широкое использование в питании продуктов моря, содержащих фтор, может резко повысить количество этого микроэлемента в организме. Как правило, с пищевыми продуктами в организм человека поступает в 4-6 раз меньше фтора, чем с питьевой водой( 1мг/л ).
При систематическом использовании воды, содержащей избыточные количества фтора, у населения развивается эндемический флюороз. Отмечается характерное поражение зубов(крапчатость эмали), нарушение процессов окостенения скелета, истощение организма. Флюороз зубов проявляется в виде непрозрачных опалесцирующих меловидных полосок или пятнышек, которые со временем увеличиваются, появляется пигментация эмали темно-желтого или коричневого цвета, наступают необратимые ее изменения. В тяжелых случаях отмечаются генерализованный остеосклероз или диффузный остеопороз костного аппарата. Избыточные количества фтора снижают обмен фосфора и кальция в костной ткани, нарушают углеводный, белковый и другие обменные процессы, угнетают тканевое дыхание и пр. Фтор является нейротропным ядом( происходит снижение подвижности нервных процессов).
Если избыток фосфора вызывает эндемический флюороз, то дефицит этого микроэлемента( меньше 0,5 мг/л ) в сочетании с другими факторами (нерациональное питание, неблагоприятные условия труда и быта) вызывает кариес зубов.
Клиническими и экспериментальными исследованиями было показано, что оптимальные количества данного элемента в рационе человека обладают как раз противокариозным действием. Механизм противокариозного действия фтора состоит в том , что при взаимодействии его с минеральными компонентами костной ткани и зубов образуются труднорастворимые соединения. Фтор также способствует осаждению из слюны фосфата кальция, что обусловливает процессы реминерализации при начинающимся кариозном процессе. В механизме противокариозного действия фтора определенную роль играет и то, что он воздействует на ферментативные системы зубных бляшек и бактерий слюны. Эта биологическая особенность фтора послужила основой для разработки эффективного метода профилактики кариеса зубов - фторирования питьевой воды. При длительном употреблении фторированной воды снижается не только пораженность кариесом зубов, но и уровень заболеваний, связанных с последствиями одонтогенных инфекций (ревматизм, сердечно-сосудистая патология, заболевания почек и др.)
ПДК фтора в питьевой воде, лимитируемые по санитарно-токсикологическому признаку вредности не должны превышать 0,7 - 1,5 мг/л.
ЙОД ( его содержится всего 0,0001% в нашем организме, а сколь велика его роль в нашей жизни...)
Йод относится к микроэлементам, имеющим жизненно важное значение в организме человека. Такие микроэлементы называют биотическими (биотиками). Основное количество йода человек получает с суточным пищевым рационом: с растительной пищей примерно 70 мкг, с пищей животного происхождения 40 мкг, с питьевой водой и атмосферным воздухом 10 мкг.
Биологическое значение йода связано с развитием эндемического зоба. В настоящее время большинство исследователей придерживается теории йодной недостаточности. Йод необходим для нормального функционирования щитовидной железы, что обеспечивается поступлением в организм примерно 150-200 мкг йода в сутки. Йодная недостаточность приводит к возникновению эндемического зоба. Заболевание проявляется в гипофункции и компенсаторном диффузном увеличении щитовидной железы. В эндемичных районах в зависимости от уровня заболеваемости эндемическим зобом в большей или меньшей степени распространены железодефицитные анемии, отклонения в физическом развитии детей, нарушения процессов окостенения костей и полового созревания, изменение иммунобиологической реактивности организма, снижение показателей умственной работоспособности и др. При наиболее выраженной форме заболевания развивается кретинизм - выраженное слабоумие, задержка роста (у детей), у взрослых развивается так называемый эндемический зоб.
Эндемический зоб широко распространен на всех континентах. Встречается преимущественно в горных районах (Швейцария, Австрия, Кавказ, Горный Алтай, Урал, Закарпатье и др.) Патогенное действие дефицита йода усугубляется в условиях недостаточности в организме Cu,Co и избытка - Mn. Несбалансированность питания (дефицит белков при избытке углеводов, недостаток витаминов при избытке жиров) ухудшает процессы метаболизма йода.
Эффективное снижение заболеваемости населения эндемическим зобом достигается лишь при проведении комплексных оздоровительных мероприятий: йодная профилактика в сочетании с оптимизацией геохимического состава окружающей среды (обогащение почвы микроэлементами, предупреждение ее антропогенного загрязнения металлами и др. ) и улучшением социально-гигиенических условий труда и быта населения.
КОБАЛЬТ (мельчайшие его количества его обеспечивают нам жизнь - гемоглобин в наших эритроцитах образуется благодаря участию кобальта... )
Кобальт широко распространен в природе. Он относится к группе биотиков. В поверхностных и подземных водах определяется в небольших концентрациях ( десятитысячные, тысячные и сотые доли миллиграмма на 1 л). Наибольшие количества кобальта найдены в бобовых и зерновых культурах (0,02- 0,1 мг/кг), овощах ( 0,015 - 0,04 мг/кг), в молоке (0,43 мг/л), в продуктах животного происхождения - говядине, свинине (от 0,02 - 0,16 мг/кг).
Кобальт занимает особое место среди микроэлементов в том отношении, что он физиологически активен в организме человека только в определенной форме - цианокобаламина, или витамина В12 . Таким образом, проблема кобальта в питании человека - это прежде всего вопрос источников и снабжения витамином В12 и всасывания этого витамина, а не самого кобальта. Любой обычный рацион содержит гораздо больше кобальта, чем доля этого элемента в виде витамина В12 , и никакого обязательного соответствия между содержанием в рационе кобальта и витамина В12 не существует. Суточная потребность в этом витамине 0,3 -2,5 мкг (данная цифра дана с учетом физиологических потребностей человека и варьирует в достаточно больших пределах). Как мы видим, молоко и мясо являются богатыми источниками витамина В12 .
Жвачные животные в противоположность человеку , и другим видам, обладающим одной желудочной полостью, утилизируют кобальт per se. Этот кобальт превращается микрофлорой рубца в витамин В12 . Образованный таким образом витамин всасывается из рубца и поступает в ткани, где он необходим в метаболизме пропионовой кислоты - основного источника энергии у жвачных. Человек, находясь в конце биосинтетической цепи, зависит от этих животных и бактерий как источников витамина В12 , поскольку не обладает способностью вводить кобальт в состав этого витамина.
Недостаточность витамина В12 вызывает у человека злокачественную (пернициозную) анемию Аддисона-Бирмера.
Избыточные количества кобальта у человека могут вызвать отравление. Токсические дозы в пище составляют 200-350 мк/кг. В необычных с точки зрения пищевого рациона условиях токсичными для человека могут быть дозы, значительно ниже 25 - 30 мг в сутки, что соответствует его концентрации в пище 200 - 300 мг/кг. Так, кобальт участвовал в качестве усугубляющего фактора при некоторых приступах острой сердечной недостаточности у лиц, потреблявших пиво в больших количествах - до 12 л в день. Такое подозрение возникло потому, что в этих закончившихся летально случаях отмечалась высокая частота полицитемии, гиперплазии щитовидной железы и истощения запасов коллоидных веществ, что сопутствовало состоянию сердечной недостаточности с застойными явлениями. Кобальт добавлялся к пиву в концентрации 1,2 - 1,5 мг/л для улучшения пенообразующих свойств; этот метод в настоящее время больше не применяется. При такой концентрации лица, потреблявшие большое количество пива, получали 6 - 8 мг сульфата кобальта. Это много меньше того количества кобальта, которое может быть принято без болезненных последствий нормальными индивидуумами с обычным рационом. Вероятно, высокое потребление кобальта в сочетании с недостаточно разнообразной диетой обуславливают проявление такой кардиомиопатии.
МАГНИЙ (...без хлорофилла не было бы жизни, а без магния не было бы хлорофилла...)
Недостаточность магния почти всегда возникает как следствие основного заболевания, проявляющегося различными симптомами и признаками, причем некоторые из них связаны с истощением запасов магния. Такие состояния включают синдромы хронических нарушений всасывания, острую диарею, хроническую почечную недостаточность, хронический алкоголизм и белково-калиевую недостаточность. При лабораторном исследовании часто вместе с магниевой недостаточностью обнаруживают и калиево - кальциевую. Признаки, обусловленные только недостаточностью магния включают эмоциональную лабильность и раздражительность, тетанию, гиперрефлексию и иногда гипорефлексию.
Магний интенсивно всасывается в подвздошной кишке. В проксимальной части кишечника он может конкурентно уменьшать всасывание кальция. Выделяется магний главным образом через кишечник. Также в иллиминации магния участвуют почки.
Магний играет фундаментальную роль в большинстве реакций, включающих перенос фосфата. К тому же считают, что он необходим для стабилизации структуры нуклеиновых кислот.
Магний широко распространен в растениях. Мясо и внутренние органы животных также богаты магнием. Молоко относительно бедный источник элемента.
Оценка потребности в магнии основана на далеко не оптимальной информации, касающийся всасывания, метаболизма и потерь этого питательного вещества; поэтому установленные допуски должны рассматриваться как предварительные.
Методом измерения равновесия было установлено, что потребность взрослого находится в пределах между 200 и 300 мг в сутки. По этим причинам предполагается, что суточное потребление 120 мг на 1000 ккал достаточно для взрослых. У детей суточная доза магния колеблется от 70 до 200 мг в сутки в зависимости от возраста.
МАРГАНЕЦ (название элемента происходит от древненемецкого слова “манганидзейн”- чистить, и дано оно стеклоделами, которые и в наши времена добавляют марганец к стеклу, чтобы оно стало светлее)
Острыми проявлениями недостаточности марганца у лабораторных животных являются нарушения роста, нарушение или подавление репродуктивной функции, аномальное формирование скелета, нервные расстройства ( атоксия новорожденных ). Можно было бы ожидать, что функции марганца и клинические и биохимические проявления его недостаточности у человека являются сходными, однако признаки, свидетельствующие о недостаточности марганца, абсолютной или относительной, никогда и ни в каком возрасте не наблюдались у человека.
Марганец относится к группе биотиков. В природных водах содержание его не превышает десятых долей миллиграмма на литр( гигиенический норматив марганца в питьевой воде, установленный по органолептическому показателю, не должен превышать 0,1 мг/л ). Марганец определяется и в животных и в растительных организмах. Наибольшие его количества обнаружены в зерновых культурах ( до 100 мг/кг ), в бобовых и клубневых культурах, лиственных овощах ( до 32 - 37 мг/кг ). Особенно богат марганцем чай. Основным источником поступления микроэлемента в организм являются пищевые продукты растительного происхождения. Марганец преимущественно депонирует в печени, косной ткани, головном мозге и селезенке.
По исследованиям ученых за последние несколько лет можно сделать вывод, что суточная потребность в марганце составляет 8 - 9 мг. У детей эта цифра варьирует в зависимости от характера питания: чем больше в рационе очищенных круп, рафинированных продуктов, хлеба из высококачественной муки, тем выше потребление марганца.
Токсичность марганца для млекопитающих и птиц крайне мала, что доказано экспериментами на крысах, свиньях и курах. О токсичности марганца для человека в результате повышенного потребления этого элемента с пищей не сообщалось; такая возможность кажется невероятной, кроме случаев сильного промышленного загрязнения окружающей среды. Хроническое отравление возникает только у шахтеров, длительно работающих с марганцевыми рудами. В этом случае марганец попадает в организм главным образом в виде частиц окиси через респираторные пути , а также через желудочно-кишечный тракт из загрязненной окружающей среды. Легкие, вероятно, служат депо, откуда марганец непрерывно всасывается. В Чили эта болезнь известна как “ марганцевое сумасшествие” и характеризуется раздражительностью, затруднениями при ходьбе, аномальной походкой, нарушениями речи, блуждающими болями и астенией. Тяжелые психические симптомы напоминают таковые при шизофрении и ведут к неврологическим расстройствам, сходными с дрожательным параличом, или болезнью Паркинсона, и обусловливающему постоянную инвалидность.
ЦИНК (...Известно, что довольно много цинка содержится в яде змей, особенно гадюк и кобр. Но, в то же время известно, что соли цинка угнетают активность этих же самых ядов...)
Патологические состояния у человека, которые, видимо, являются следствием недостатка цинка в питании, проявляются в замедленном росте и половом инфантилизме подростков, идиопатической гипогезии и в нарушении заживления ран. Замедление роста и половой инфантилизм, вызываемые недостатком цинка, были изучены и описаны еще в древнем Египте и Иране и наблюдались у лиц обоего пола.
Причины, вызываемые недостаточность цинка - это присутствие в рационе большого количества хлеба из муки грубого помола, малое количество мяса, также причиной недостаточности могут стать длительные кровопотери, лихорадочные состояния, цирроз печени, алкоголизм, постоянный диализ для лечения почечной недостаточности, большие потери цинка с потом. Истощение общих запасов цинка приводит к нарушению использования азота в организме.
Продукты питания животного происхождения - основной источник цинка. В мясе его содержится порядка 20-60 мгк/г, в молоке - 3-5 мкг/г, рыба и другие продукты моря - 15 мкг/г.
Суточная потребность в цинке широко варьирует в зависимости от возраста, профессии, пола, физиологических состояний ( беременность и роды ), и составляет от 1,25 мкг до 5,45 мкг.
Все злаки и большинство овощей содержат фитин ( гексафосфорный эфир инозита ), который может связывать цинк, и тем самым снижать его биодоступность для организма. Образование комплекса фитином является, вероятно, важным этиологическим фактором в генезисе недостаточности цинка в районах, где основным продуктом являются злаки грубого помола без дрожжей. Исследования на животных позволяют предположить, что доступность цинка из растительных продуктов для всасывания в кишечнике меньше, чем из продуктов животного происхождения. Из факторов, которые могут влиять на всасывание цинка, лучше всего изучен фитин. К другим компонентам растений, способным связывать цинк и тем самым уменьшать его биодоступность, относятся некоторые гемицеллюлозы и комплексы аминокислот с углеводами. Известно, что цинк, содержащийся в обычном для западных стран рационе, усваивается примерно на 20-40 %.
Биологическая роль цинка двоякая и не до конца выяснена. Установлено, что цинк - обязательный компонент фермента карбоангидразы, содержащийся в эритроцитах. Также было показано, что цинк играет известную роль в метаболизме нуклеиновых кислот и белка. Одну
8-09-2015, 21:13