Л азерно е излучени е в биологических исследованиях .
Введение
В настоящее время в большинстве стран мира наблюдается интенсивное внедрение лазерного излучения в биологических исследованиях и в практической медицине. Уникальные свойства лазерного луча открыли широкие возможности его применения в различных областях: хирургии, терапии и диагностике. Клинические наблюдения показали эффективность лазера ультрафиолетового, видимого и инфракрасного спектров для местного применения на патологический очаг и для воздействия на весь организм.
В России лазеры применяются в биологии и медицине уже более 30 лет. Исторически сложилось так, что приоритет в раскрытии механизмов и в биологическом применении находится в странах бывшего СССР.
За последние 15 лет механизмы действия во многом раскрыты и уточнены. Воздействие низкоинтенсивных лазеров приводит к быстрому стиханию острых воспалительных явлений, стимулирует репаративные (восстановительные) процессы, улучшает микроциркуляцию тканей, нормализует общий иммунитет, повышает резистентность (устойчивость) организма.
В настоящее время доказано, что низкоинтенсивное лазерное излучение обладает выраженным терапевтическим действием.
Лазер или оптический квантовый генератор - это техническое устройство, испускающее свет в узком спектральном диапазоне в виде направленного сфокусированного, высококогерентного монохроматического, поляризованного пучка электромагнитных волн.
В зависимости от характера взаимодействия лазерного света с биологическими тканями различают три вида фотобиологических эффектов:
1) Фотодеструктивное воздействие, при котором тепловой, гидродинамический, фотохимический эффекты света вызывают деструкцию тканей. Этот вид лазерного взаимодействия использует в лазерной хирургии.
2) Фотофизическое и фотохимическое воздействие, при котором поглощенный биотканями свет возбуждает в них атомы и молекулы, вызывает фотохимические и фотофизические реакции. На этом виде взаимодействия основывается применение лазерного излучения как терапевтического.
3) Невозмущающее воздействие, когда биосубстанция не меняет своих свойств, в процессе взаимодействия со светом. Это такие эффекты, как рассеивание, отражение и проникновение. Этот вид используют для диагностики (например - лазерная спектроскопия).
Фотобиологические эффекты зависят от параметров лазерного излучения: длинны волны, интенсивности потока световой энергии, времени воздействия на биоткани.
В лазеротерапии применяются световые потоки низкой интенсивности, не более 100 мВт/см кв., что сопоставимо с интенсивностью излучения Солнца на поверхности Земли в ясный день. Поэтому такой вид лазерного воздействия называют низкоинтенсивным лазерным излучением (НИЛИ), в англоязычной литературе Low Level Laser Therapy (LLLT).
Одной из важных характеристик лазерного излучения является его спектральная характеристика или длинна волны. Как уже говорилось, фотобиологической активностью обладает свет в ультрафиолетовой, видимой и инфракрасной областях спектра. Фотобиологические процессы достаточно разнообразны и специфичны. Их насчитывается в настоящее время несколько десятков.
В основе их лежат фотофизические и фотохимические реакции, возникающие в организме при воздействии света. Фотофизические реакции обусловлены преимущественно нагреванием объекта до различной степени (в пределах 0.1-0.3 С) и распространением тепла в биотканях. Разница температуры более выражена не биологических мембранах. что ведет к оттоку ионов Na+ и K+, раскрытию белковых каналов и увеличению транспорта молекул и ионов. Фотохимические реакции обусловлены возбуждением электронов в атомах, поглощающего свет вещества. На молекулярном уровне это выражается в виде фотоионизации вещества, его восстановления или фотоокисления, фотодиссоциации молекул, в их перестройке - фотоизомеризации.
Уже первые исследования показали, что лазерная радиация избирательно поглощается содержащимися в клетках пигментными веществами. Пигмент меланин поглощает свет наиболее активно в фиолетовой области, порфирин и его производные - красный, так оксигемоглобин поглощает в диапазоне 542 и 546 nm, восстановленный гемоглобин в диапазоне 556 nm, а фермент каталаза - 628 nm. Учитывая ключевую роль каталазы во многих звеньях энергообразования, можно понять широкий лечебный диапазон гелий - неонового лазера (ГНЛ) и его универсальное нормализующее воздействие на биологические процессы в организме.
Поглощение лазерной энергии происходит и различными молекулярными образованиями не имеющими специфических пигментов и фотобиологических мишеней. Вода поглощает видимый свет и красную часть спектра. Это меняет у мембран структурную организацию водного слоя и изменяет функцию термолабильных каналов мембран.
В биологических структурах организма существуют собственные электромагнитные поля и свободные заряды, которые перераспределяются под влиянием фотонов излучения ГНЛ, что ведет к прямой “энергетической подкачке” облучаемого организма.
Первичные химические реакции сопровождаются появлением свободных радикалов, в небольшом количестве, которые в свою очередь запускают процессы окисления биосубстратов, имеющих цепной характер. Этот момент позволяет понять переключающий (тригеррный) механизм многократного усиления первичного эффекта НИЛИ.
Таким образом, в основе механизма воздействия на ткани, маломощных лазеров в видимой и инфракрасной областях лежат процессы, происходящие на клеточном и молекулярном уровнях.
Низкоинтенсивное лазерное излучение стимулирует метаболическую активность клетки. Стимуляция биосинтетических процессов может быть одним из важных моментов, определяющих действие низкоинтенсивного излучения лазера на важнейшие функции клеток и тканей, процессы жизнедеятельности и регенерации (восстановления).
ГНЛ приводит к увеличению содержания в ядрах клеток человека ДНК и РНК, что свидетельствует об интенсификации процессов транскрипции (делений). Это первый этап процесса биосинтеза белков. В связи с этим возникает вопрос о запуске мутаций. Однако доказано, что частота хромосомных мутаций в клетках человека вызванных химическими мутагентами, при воздействии ГНЛ уменьшается. ГНЛ оказывает антимутагенный эффект, активизирует синтез ДНК и ускоряет восстановительные процессы в клетках подвергнутых потоку нейтронов или гамма - радиации. Это позволяет использовать лазерное излучение в онкологии, на вредных производствах, в военной медицине, как профилактический, так и лечебный фактор в комбинации с медикаментами.
НИЛИ стимулирует выработку универсального источника энергии АТФ (АТР) в митохондриях, ускоряет скорость его образования, повышает эффективность работы дыхательной цепи митохондрий. В то же время количество потребляемого кислорода уменьшается. Происходят перестройки в мембранах митохондрий. НИЛИ оказывает антиоксидантный эффект. Известно, что интенсивность свободнорадикального окисления в липидной фазе мембран мембран клеток определяется соотношением насыщенных и ненасыщенных липидов, вязкостью липидной компоненты мембран, которые меняются при лазерной терапии, что отражается на структурных перестройках в мембране, ее функциональном состоянии, активности мембраносвязанных ферментов.
Обобщая данные современных исследований можно сказать, что НИЛИ вызывает активацию энергосвязывающих процессов в патологически измененных тканях с нарушением метаболизма, повышение активности важнейших ферментов, снижение потребления кислорода тканями с повышением (фосфорилирующей) активности митохондрий, обогащением их энергией, усиление интенсивности гликолиза (образования гликогена) в тканях и другие. Вторичные эффекты представляют собой комплекс адаптационных и компенсаторных реакций возникающих в результате реализации первичных эффектов в тканях, органах и целостном живом организме.
Лазерное излучение устраняет дисбаланс в центральной нервной системе.
Однако, на что хочется обратить внимание, что в зависимости от дозы лазерного излучения можно получить как стимулирующий так и угнетающий эффекты, Это очень важно. Эти факты необходимо использовать при применении лазера у ослабленных больных, в педиатрии, при хронических заболеваниях.
Лазерная терапия может проводиться, как самостоятельный метод, так и в комплексе с медикаментозным лечением, в том числе гормональном и с методами физиотерапии. При этом необходимо иметь в виду, что в процессе лечения чувствительность организма к лекарственным средствам изменяется и появляется необходимость в уменьшении обычных дозировок иногда до 50%, а в ряде случаев и отказаться от них.
С учетом патогенетического механизма действия лазерного излучения на организм разработаны показания к лазеротерапии.
Внутренние болезни:
Ишемическая болезнь сердца, гипертоническая болезнь, хронические неспецифические заболевания легких, язвенная болезнь желудка и двенадцатиперстной кишки, дискинезия желчных путей, колиты, хронический панкреатит, острый и хронический (безкаменные) холециститы, спаечная болезнь.
Заболевания опорно-двигательного аппарата:
Остеохонроз позвоночника с корешковым синдромом, воспалительные заболевания костей и суставов обменной этиологии в стадии обострения, артриты и артрозы, заболевания и травматические повреждения мышечно-связочного аппарата (миозиты, тендовагиниты, бурситы).
Заболевания нервной системы:
Невриты и невралгии периферических нервов, невралгия тройничного нерва, неврит лицевого нерва, сосудисто-мозговая недостаточность.
Заболевания мочеполовой системы:
Хронический сальпингоофорит, трубное бесплодие, хронический неспецифический простатит, уретрит, цистит, ослабление половой функции.
Заболевания ЛОР - органов:
Хроническое воспаление придаточных пазух носа, фаринголарингиты, тонзиллиты, отиты, субатрофический и вазомоторный риниты.
Хирургические заболевания:
Послеоперационные и длительно не заживающие раны, трофические язвы, келлоидные рубцы (в подострой стадии), травмы (механические, термические, химические), остеомиелиты, трещины заднего прохода, гнойные абсцессы, маститы, сосудистые заболевания нижних конечностей.
Заболевания кожных покровов:
Зудящие дерматозы, трофические язвы различного генеза, воспалительные инфильтрата, фурункулы, экзема, нейродермиты, псориаз, атопический дерматит.
Стоматологические заболевания:
Стоматиты, гингивиты, альвеолиты, пульпиты, периодонтиты, парадонтоз, одонтогенные воспалительные процессы челюстно-лицевой области.
Лазерной терапии присущи черты патогенетически обоснованного метода. При ее применении важен учет не только общего состояния организма, специфики патологического процесса, его клинических проявлений, стадий и формы заболеваний, но и сопутствующие заболевания, возрастные и профессиональные особенности пациента. Наиболее результативно применение лазеротерапии в функционально обратимых фазах болезни, хотя новые методики находят свое применение и при более тяжелых проявлениях патологического процесса, при выраженных морфологических изменениях.
Допускается применение совместно с лазерной терапией и других физиотерапевтических факторов, лечебной физкультуры, массажа, не более 2-х факторов в один день. И как было сказано ранее комплексное применение лазерной терапии с медикаментозными препаратами значительно эффективнее, особенно в острых стадиях.
Суммарная эффективность лазерной терапии колеблется от 50 до 85 %, в отдельных случаях до 95 %.
Противопоказаниями к НИЛИ являются:
Абсолютные противопоказания:
заболевания крови, снижающие свертываемость крови, кровотечения.
Относительные противопоказания:
сердечно - сосудистые заболевания в стадии декомпенсации;
церебральный склероз с выраженным нарушением мозгового кровообращения;
острые нарушения мозгового кровообращения;
заболевания легких с выраженной дыхательной недостаточностью;
печеночная и почечная недостаточность в стадии декомпесации;
злокачественные новообразования;
первая половина беременности;
активный туберкулез легких.
Однако в специализированных клиниках, оснащенных современной техникой и технологиями лазерная терапия используется и при вышеперечисленных заболеваниях.
Различают четыре основных способа доставки НИЛИ к пациенту:
Наружное или чрескожное воздействие: орган, сосуды, нервы, болевые зоны и точки облучаются через неповрежденную кожу в соответствующей области тела. Если патологический процесс локализован в поверхностных слоях кожи, то лазерное воздействие направленно непосредственно на него. Чрескожное воздействие основывается на том, что лазерное излучение ближней инфракрасной области хорошо проникает через ткани на глубину до 5-7 см. и достигает пораженного органа. Доставка излучения к поверхности кожи осуществляется либо непосредственно излучающей головкой, либо с помощью волоконного световода и световодной насадки.
Воздействие НИЛИ на точки акупунктуры. Показания для этого метода достаточно широки. Лазерная рефлексотерапия бескровна, безболезненна, комфортна. Возможно сочетание с различными медикаментами, диетой, фитотерапией и классической иглорефлексотерапией (чжень-цзю). Используется классическая (китайская, европейская) рецептура (набор точек). Многочисленными исследованиями доказано, что лазерная акупунктура влияет на различные многоуровневые рефлекторные и нейрогуморальные реакции организма. Стимулируется синтез гормонов, улучшается микроциркуляция в различных областях тела, увеличивается синтез простогландинов Е, F, эндорфинов, энкефалинов. Максимальный эффект достигается к 5-7 процедуре и держится значительно дольше, чем при иглорефлексотерапии. При лазерной акупунктуре возможно использование непрерывного излучения, но более эффективно импульсное излучение с применением различных частот для различной патологии. Доставка лазерного излучения к точке осуществляется либо световодным волокном, либо непосредственно излучающей головкой со специальной насадкой.
Внутриполостной путь. Подведение НИЛИ к патологическому очагу с помощью световолокна к слизистой оболочке. Осуществляется, либо через эндоскопическую аппаратуру, либо с помощью специальных насадок. При этом способе доставки НИЛИ с успехом используется как красное так и инфракрасное излучение.
Внутривенное лазерное облучение крови (ВЛОК) проводится путем пункции в локтевую вену или в подключичную вену, в условиях интенсивной терапии. В вену вводят тонкий световод, через который облучается протекающая по вене кровь. Для ВЛОК обычно используют лазерное излучение в красной области (632.8 nm) и в инфракрасной (1264 nm).
Рассмотрим теперь более подробно устройство лазера и механизмы воздействия НИЛИ на человека в медицинской практике.
Термин “лазер” (“laser”) составлен из начальных букв пяти слов “Light amplification by stimulated emission of radiation”, что в переводе с английского означает “ Усиление света путем его вынужденного излучения”. В сущности, лазер представляет собой источник света, в котором путем внешнего освещения достигается возбуждение атомов определенного вещества. И когда эти атомы под воздействием внешнего электромагнитного излучения возвращаются в исходное состояние, происходит вынужденное излучение света.
Принцип действия лазера сложен. Согласно планетарной модели строения атома, предложенной английским физиком Э.Резерфордом (1871-1937), в атомах различных веществ электроны движутся вокруг ядра по определенным энергетическим орбитам. Каждой орбите соответствует определенное значение энергии электрона. В обычном, невозбужденном, состоянии электроны атома занимают более низкие энергетические уровни. Они способны только поглощать падающее на них излучение. В результате взаимодействия с излучением атом приобретает дополнительное количество энергии, и тогда один или несколько его электронов переходят в отдаленные от ядра орбиты. То есть на отдаленные от ядра орбиты, то есть на более высокие энергетические уровни. В таких случаях говорят. Что атом перешел в возбужденное состояние. Поглощение энергии происходит строго определенными порциями - квантами. Избыточное количество энергии, полученное атомом, не может в нем оставаться бесконечно долго - атом стремится избавиться от излишка энергии.
Возбужденный атом при определенных условиях будет отдавать полученную энергию так же строго определенными порциями, в процессе его электроны возвращаются на прежние энергетические уровни. При этом образуются кванты света (фотоны), энергия которых равна разности энергии двух уровней. Происходит самопроизвольное, или спонтанное излучение энергии. Возбужденные атомы способны излучать не только сами по себе, но и под действием падающего на них излучения, при этом излученный квант и квант, “породивший” его, похожи друг на друга. В результате индуцированное (вызванное) имеет ту же длину волны, что и вызвавшая его волна. Вероятность индуцированного излучения будет нарастать при увеличении количества электронов, перешедших на верхние энергетические уровни. Существуют так называемые инверсные системы атомов, где происходит накопление электронов преимущественно на более высоких энергетических уровнях. В них процессы излучения квантов преобладают над процессами поглощения.
Инверсные системы используются при создании оптических квантовых генераторов - лазеров. Подобную активную среду помещают в оптический резонатор, состоящий из двух параллельных высококачественных зеркал, размещенных по обе стороны от активной среды. Кванты излучения, попавшие в эту среду, многократно отражаясь от зеркал бесчисленное количество раз пересекают активную среду. При этом каждый квант вызывает появление одного или нескольких таких же квантов за счет излучения атомов, находящихся на более высоких уровнях.
Рассмотрим принцип работы лазера на кристалле рубина. Рубин - природный минерал кристаллического строения, исключительно твердый (почти как алмаз). Внешние кристаллы рубина очень красивы. Их цвет зависит от содержания хрома имеет различные оттенки: от светло-розового до темно-красного. По химической структуре рубин - окись алюминия с примесью (0,5%) хрома. Атомы хрома - активное вещество рубинового кристалла. Именно они являются усилителями волн видимого света и источником лазерного излучения. Возможное энергетическое состояние ионов хрома можно представить в виде трех уровней (I, II и III). Чтобы активизировать рубин и привести атомы хрома в “рабочее” состояние, на кристалл навивают спиральную лампу - накачку, работающую в импульсном режиме и дающую мощное зеленое излучение света. Эти “зеленые” кванты тотчас поглощаются электронами хрома, находящимися на нижнем энергетическом уровне (I). Возбужденным электронам достаточно поглощенной энергии для перехода на верхний (III) энергетический уровень. Возвратиться в основное состояние электроны атомов хрома могут либо непосредственно с третьего уровня на первый, либо через промежуточный (II) уровень. Вероятность перехода их на второй уровень больше, чем на первый.
Большая часть поглощенной энергии переходит на промежуточный (II) уровень. При наличии достаточного интенсивного возбуждающего излучения представляется возможность получить на втором уровне больше электронов, чем осталось на основном. Если теперь осветить активизированный кристалл рубина слабым красным светом (этот фотон соответствует переходу со II в I основное состояние), то “красные” кванты как бы подтолкнут возбужденные ионы хрома, и они со второго энергетического уровня перейдут на первый. Рубин при этом излучит красный свет. Так как кристалл рубина представляет собой стержень, торцевые поверхности которого изготавливаются в виде двух отражающих зеркал, то отразившись от торцов рубина, “красная” волна вновь пройдет через кристалл и на своем пути всякий раз будет вовлекать в процесс излучения все большее число новых частиц, находящихся на втором энергетическом уровне. Таким образом, в кристалле рубина непрерывно накапливается световая энергия, которая выходит через его границы через одну из торцевых полупрозрачных зеркальных поверхностей в виде испепеляющего красного луча в миллион раз превосходящего по яркости луч Солнца.
Помимо рубина, в качестве активного вещества применят и другие кристаллы, например, магния окись, топаз, уваровит, раствор неодима в стекле и т.д.
Удивительное свойство кристаллов преобразовывать свет известно еще в древней Индии. У индусов существовала легенда о камнях, сияющих ярче самого солнца. Она описана в романе “Лезвие бритвы” замечательного фантаста И.Ефремова. Действие происходило за тысячу лет до нашей эры. В одном из индийских храмов в руки воинов Александра Македонского попала таинственная корона, украшенная необычными, по-особому ограненными камнями. Согласно преданию монахов, ее передали людям боги. Надевать корону могли только святые. Ибо, если в яркий солнечный день она окажется на голове смертного, то человек погибнет от таинственного излучения. Считая себя непобедимым и бессмертным, Александр Македонский надел корону и вышел из храма на освещенную ярким полудневным солнцем площадь. Воины с ликованием встретили своего полководца, на голове которого блистала корона богов. Вдруг Александр Македонский пошатнулся и упал. Вскоре он занемог и умер.
Трудно предполагать, что было истинной причиной смерти полководца, но определенная ценность легенды состоит в том, что в ней, пожалуй, впервые было описано свойство кристаллов генерировать качественно новый вид излучения.
Существуют и газовые лазеры, в которых активным веществом являются газы (например, смесь аргона и кислорода, гелия и неона, окись углерода), а также
8-09-2015, 21:44