Реферат
Тема: Искусственное кровообращение
План
Вступление
Искусственное кровообращение:
Аппараты ИК
Оксигенаторы
Пузырьковые оксигенaторы
Пленочные оксигенаторы
Мембранные оксигенаторы
Коронарный отсос
Теплообменник
Фильтры
Методика проведения ИК
Выбор раствора для заполнения АПК
Подключение АИК к больному
Начало и поддержание ИК
Заключение. Переход на естественное кровообращение
Список литературы
Введение
Мысль о возможности поддержания жизнедеятельности организма с помощью ИК, по свидетельству С.С. Брюхоненко и С.И. Чечулина (1928), была высказана LeGallois в 1812 г. Однако прошло более 100 лет, прежде чем С.С. Брюхоненко в 1924 г. сконструировал первый в мире АИК, названный им автожектором. С его помощью были проведены успешные эксперименты по перфузии головы собаки, отделенной от туловища.
Усовершенствование автожектора позволило С.С. Брюхоненко впервые в мире осуществить ИК целостного организма собаки. Начало выдающемуся достижению медицины XX в было положено. Однако приоритет С.С. Брюхоненко был признан только после опубликования статьи WProbert и D. Melrose (I960). «Ранний русский аппарат сердце—легкие». Этот факт подтверждает и известный американский анестезиолог L. Rendel-Baker (1963) «…Только недавно нам стало известно о значительно более ранних сериях успешных перфузии собак, произведенных С.С. Брюхоненко в 1929 г. К несчастью, эта работа была опубликована в русской и французской литературе, где и осталась похороненной». Остается только удивляться, что подобное произошло с изобретением, запатентованным в 1929 г. в Германии и Англии и в 1930 г во Франции. Самижеработыбылиопубликованы «Journal Physiology et Pathology General», 1929, Vol 27, № 1. Иужесовершеннонепонятно, когдатотжеD. Melrose, в I960 г. восстановившийприоритетС.СБрюхоненко, через 26 летвкниге «Cardiopulmonary bypass», вышедшейв 1986 г. подредакциейКTaylor, иС. Lake вкниге «Cardiovascular anesthesia» (1985) основоположникомметодаИКназываютJ. Gibbon. Только в 1937 г. этот автор провел успешные эксперименты с искусственным кровообращением на кошках. С помощью сконструированного им аппарата, состоящего из насоса и оксигенатора, он пережимал легочную артерию на 25 мин, вскрывал ее и демонстрировал возможность эмболэктомии. Начавшаяся вскоре Вторая мировая война затормозила работы в области ИК. Симптоматично, что в первые послевоенные годы наибольших успехов достигли ученые стран, не пострадавших в войне (США, Швеция). Были созданы более совершенные модели АИК, с помощью которых уже можно было провести общую перфузию у человека [GibbonJ. etal., 1948; Crafoord С. etal., 1948, JongbloedD., 1919] В 1951 г. С. Dennis и соавт. впервые применили ИК у человека, однако больная с дефектом межпредсердной перегородки умерла на операционном столе от сердечной недостаточности. Наконец, в 1953 г. J. Gibbon выполнил первую успешную операцию по поводу дефекта межжелудочковой перегородки в условиях общей перфузии организма. С 1955 г. метод стал применяться в различных странах. Этому способствовали работы D. Kirklm и соавт. из клиники Мауо (США). Авторы модифицировали аппарат Гиббона и стали оперировать с объемной скоростью, равной или близкой к нормальному сердечному выбросу.
В СССР работы по созданию клинических моделей АИК были начаты в 1952 г. (Е.А. Вайнриб и сотр.). В 1957 г. А.А. Вишневский с помощью второй модели АИК-57 произвел первую успешную операцию на открытом сердце, а спустя 2 года метод стал применяться в ведущих учреждениях страны, руководимых Н.М. Амосовым, А.Н. Бакулевым, А.А. Вишневским, П.А. Куприяновым, Б.В. Петровским, Ф. Г. Угловым и др. В настоящее время метод ИК широко применяется во всем мире. Сконструированные в 50-х годах образцы АИК по праву заняли место в музеях. На смену им пришли новые, оснащенные современной электронной техникой аппараты с одноразовыми оксигенаторами, теплообменниками, фильтрами, канюлями и т.д. Сам по себе метод ИК практически стал совершенно безопасным. Об этом свидетельствуют сотни тысяч успешных операций, проводимых ежегодно в разных странах [TinkerJ., 1989].
Аппараты ИК
Насосы. Современные насосы АИК должны обладать производительностью 4-5 л/мин, т.е. приблизительно равной минутному объему сердца в покое. Главными требованиями ко всем конструкциям насосов являются минимальное повреждение форменных элементов крови и высокая надежность. Различают клапанные (мембранный, камерный) и бесклапанные (роликовый, пальчиковый) насосы, которые создают пульсирующий поток различной амплитуды. В литературе существуют противоположные точки зрения относительно целесообразности использования насосов с малой или большой амплитудой [Taylor К., 1984; HdmundL., 1982; PhilbinD. etal., 1982]. Сторонники насосов с большой амплитудой (пульсирующий поток) подчеркивают их физиологичность, лучшее кровоснабжение миокарда, больший диурез, выраженный капиллярный кровоток, минимальный ацидоз, уменьшение периферического сопротивления и др. [WaabenA. etal., 1985]. Позиция же их противников основывается на увеличении гемолиза вследствие повышенной турбулентности из-за быстрого ускорения и замедления кровотока, а также усложнением насосов и других технических средств в АИК, тем более, что системные показатели кровообращения среднее артериальное давление и общее периферическое сопротивление практически не меняются как при пульсирующем, гак и при непульсирующем кровотоке [Осипов В.П., 1976].
Разумно поступили конструкторы фирмы «Stockert» (ФРГ), предусмотрев возможность применения пульсирующего и непульсирующего кровотока в одном АИК.
Оксигенаторы
Технические устройства, временно заменяющие оксигенирующую функцию легких, подразделяются на две группы: 1) оксигенаторы, где кровь и кислород непосредственно контактируют друг с другом; 2) оксигенаторы, где между кровью и кислородом имеется газопроницаемая мембрана. К первой группе относятся пузырьковые и пленочные оксигенагоры, ко второй — мембранные. Пузырьковые оксигенaторы в свою очередь делятся на прямоточные и противоточные в зависимости от направления потоков газа и крови [Осипов В.П., 1976]. Характерными представителями прямоточного оксигенатора являются оксигенатор де Волла — Миллихая, сконструированный в 1956 г. в США, и все последующие его модификации. К подгруппе пузырьковых оксигенаторов относятся и современные одноразовые оксигенирующие системы различных фирм: «Bentley» (США), «Shiley» (США), «Harvey» (США), «Gambro» (Швеция). Недостатками прямоточных пузырьковых оксигенаторов являются мощный поток кислорода и связанный с этим гемолиз, а также вспенивание и последующий переход в жидкое состояние всего объема крови, проходящего через оксигенатор [Осипов В.П., 1976]. Кислород, поступающий в кровь из нижней части пузырькового оксигенатора противоточного типа, создает пенный столб (экран), навстречу которому из верхней части оксигенатора стекает венозная кровь. Этот принцип более экономичен и эффективен. Расход кислорода и количество крови существенно меньше, чем в прямоточных оксигенаторах. Из-за вспенивания небольшой части притекающей венозной крови меньше травмируются форменные элементы крови. Недостатком указанных оксигенаторов является сложность управления, обусловленная необходимостью постоянного наличия пенного столба [Осипов В.П., 1976]. Оксигенаторами указанного типа были снабжены различные модификации отечественных АИК.
Пленочные оксигенаторы
Как свидетельствует название этих технических устройств, оксигенация происходит при контакте пленки крови, образовавшейся на какой-либо твердой поверхности, с кислородом. Различают стационарные и ротационные пленочные оксигенаторы. В стационарных оксигенаторах кровь стекает по неподвижным экранам, которые находятся в атмосфере кислорода. Примером является оксигенатор Гиббона, с помощью которого была проведена первая успешная операция на сердце с ИК. Основными недостатками экранных оксигенаторов являются их дороговизна, плохая управляемость, громоздкость конструкции и необходимость большого количества донорской крови. Более эффективны ротационные оксигенаторы. К ним относятся популярные в прошлом дисковый оксигенатор Кея — Кросса и цилиндровый оксигенатор Крафорда — Сеннинга. Пленка крови, образующаяся на поверхности вращающихся дисков или цилиндров, контактирует с кислородом, подаваемым в оксигенатор. Производительность ротационных оксигенаторов в отличие от экранных может быть увеличена за счет повышения скорости вращения дисков (цилиндров). Рассмотренные пленочные и пузырьковые оксигенаторы многоразового пользования имеют исторический интерес. На смену им пришли оксигенаторы одноразового пользования в комплекте с теплообменником, артериальным и венозным резервуарами, специальной «антифомной» (силикон) секцией внутри оксигенатора, газовыми и жидкостными фильтрами, набором канюль и катетеров. Нет необходимости подчеркивать, что все это находится в стерильных упаковках. Наибольшей популярностью пользуются оксигенаторы фирм «Bentley» (США), «Harvey» (США), «Shiley» (США), «Polystan» (Дания), «Gambro» (Швеция) и др. Эти оксигенаторы полностью удовлетворяют запросы современной кардиохирургии и кардиоанестезиологии. Однако если необходима длительная (более 4 ч) искусственная оксигенация крови, то вредное действие прямого контакта крови с кислородом и углекислым газом становится небезразличным для организма. Антифизиологичность этого феномена проявляется изменением электрокинетических сил, нарушением нормальной конфигурации молекул белков и их денатурацией, агрегацией тромбоцитов, выбросом кининов и т.д. [BethumeI)., 1986]. Во избежание этого при длительных перфузиях более целесообразно пользоваться мембранными оксигенаторами.
Мембранные оксигенаторы
Первый мембранный оксигенатор небольших размеров был сконструирован W. Kolff и с успехом испытан в эксперименте D. Effler в 1956 г В гом же году О. Olowes и соавт. применили в клинике больших размеров мембранные легкие, используя полиэтиленовые, затем теф-лоновые мембраны. В 1958 г. G. Clowes сообщил о 100 больных, у которых были использованы мембранные легкие. В последующие годы были созданы более эффективные и менее громоздкие модели с использованием в качестве мембраны полимера силикона и поликарбоната [Peirce Е., 1970], силиконизированного угля [Kolobow Т. etal., 1963, 1971]. Первые одноразовые оксшенаторы с мембраной для микропористого полипропилена были применены в клинике при операциях на сердце J. Hill и соавт. в 1975 г. В аналитическом обзоре М. Bramson и соавт. (1981) сообщается об использовании мембранных оксигенаторов более чем у 500 больных при операциях на сердце и у 35 при острой дыхательной недостаточности в течение нескольких дней. Наибольший срок 21 день. Другая модель оксигенаторов с использованием силиконовых мембран оыла сконструирована A. Lande в 1967 г., и ее начала выпускать фирма «EdwardsLaboratories» (США). В последующие 10 лег ее использовали во многих странах [LandeA. etal., 1970; CarlesonR. etal., 1973; BirnbaumD. etal., 1979, и др.]. В настоящее время наибольшей популярностью пользуются мембранные эксигенаторы «CobemembraneLung» (США) производительностью 6 л/мин с мембраной из микропористого полипропилена, «Sci. Med. membraneoxygenaors» (США) - спиральный компактный с метилсиликоновой мембраной, «TerumoCapioxOxygenalor» (Япония) — с мембраной из микропористого полипропилена, с помощью которого Suma и соавт. произвели более 100 операций на открытом сердце у больных с массой тела 4,8—78 кг, «Travenolmembraneoxygenator» (США) с мембраной из микропористого тефлона, с помощью которого было выполнено более 4000 операций [CosgrovzD., LoopE., 1981) В заключение следует подчеркнуть, что преимущества мембранных оксигенаторов выявляются после двухчасовой перфузии [Lake С., 1985]. При этом отмечаются меньший гемолиз, менее выраженное снижение числа лейкоцитов и содержания иммуноглобулинов IgG, IgM. Воздействие на гемодинамику выражается и в снижении периферического сопротивления, увеличении диуреза. Поскольку большинство операций на сердце проводятся в пределах 2 ч, перспективы мембранных оксигенаторов в хирургии сердца пока проблематичны [Lake С., 1985] При длительных же перфузиях в реаниматологической практике их преимущество бесспорно.
Коронарный отсос
Любой АИК, как правило, снабжен системой коронарного отсоса для удаления крови из полостей сердца и оперативной раны и возвращения ее в оксигенатор АПК. Следует подчеркнуть, что коронарным отсосом можно пользоваться только в условиях гепаринизации больного. Сразу после введения протамина сульфата для нейтрализации гепарина (по окончании ПК) необходимо отсасывать кровь обычным отсосом В. противном случае может свернуться кровь, оставшаяся в оксигенаторе, которою обычно нагнетают больному в ближайшие 10-20 мин после перфузии. Отметим также, что именно в системе коронарного отсоса происходит наибольший гемолиз, особенно если применяется вакуумный принцип. При использовании роликовых насосов гемолиз менее выражен. В современных аппаратах имеется несколько таких насосов с раздельной регуляцией их производительности.
Теплообменник
Для экстракорпоралыюго охлаждения и согревания крови АИК снабжают теплобменником. Обычно его монтируют на пути артериальной магистрали. Различают трубчатые и щелевые теплообменники. Кровь, протекая по трубкам, охлаждается (согревается) водой, циркулирующей в цилиндре, внутри которого расположены трубки (рис. 1). В настоящее время теплообменники выпускаются в комплекте с оксигенаторами в одноразовом исполнении.
Рис. 1 Трубчатый теплообменник (схема)
Фильтры
Современная аппаратура ИК, как правило, снабжена фильтрами для жидких сред и газов. Это необходимое условие при проведении общей перфузии организма, гарантирующее безопасность больного. Фильтры для крови с отверстиями диаметром 40 мкм устанавливаются на линии артериальной магистрали, в системах коронарного отсоса и в рециркуляционной линии. В системе для введения кардиоплегического раствора также устанавливаются специальные фильтры. Необходимость в фильтрах различного назначения, задерживающих микрочастицы, бактерии, пузырьки газа, обусловлена большим числом осложнений и летальных исходов вследствие эмболии сосудов головного мозга и других жизненно важных органов [HillJ. etal., 1969; PattersonR. etal., 1974]. Для реальной оценки этой опасности потребовалось 17 лет со дня первой операции с ИК в 1953 г. Появление первых серийно выпущенных фильтров в 1970 г., изготовленных фирмами «Pioner-Swank» (США) и «Pall» (ФРГ) для установки на артериальной магистрали и системе коронарного отсоса, положило начало новому периоду в хирургии открытого сердца, гарантирующему полную безопасность самого метода ИК. Надо признать, что в ведущих клиниках мира этот уровень достигнут. Летальность, связанная с ИК, практически отсутствует. Следует иметь в виду, что микрочастицы и газовые пузырьки могут поступить в ток крови из разных источников и на различных этапах операции и ИК. Большую опасность представляет консервированная донорская кровь, в которой еще до перфузии содержится значительное количество микроагрегатов дегенерированных тромбоцитов, гранулоцитов, эритроцитов и фибрина [SolisR. etal., 1974]. Микрочастицы неорганического происхождения могут остаться в резервуарах оксигенатора, канюлях и др. в процессе их изготовления [ClarkR. etal., 1975]. Во время операции в АИК могут поступать через систему коронарного отсоса микрочастицы кости и тканей (подкожная клетчатка, мышцы и т.д).
Другим источником образования микроагрегатов являются механическая травма крови роликовыми насосами, коронарным отсосом, при взаимодействии кислорода с кровью, денатурации белков и повреждении клеточных компонентов и, наконец, реакция последних с инородными материалами АИК [JonesH. et. al., 1982]. Существенную опасность представляет и газовая эмболия. Микропузырьки газа могут попасть в артериальную магистраль АИК из оксигенатора. Антиформ успешно гасит крупные пузырьки, но не всегда мелкие [PattersonR. etal., 1982; Semb В. etal., 1982]. Проблему не решают и мембранные оксигенаторы, так как могут иметь место незаметные микроповреждения самой мембраны. Недостаточный градиент давления между газом и кровью по обе стороны мембраны может также способствовать образованию микропузырьков газа в крови. Подобное происходит и при быстром и избыточном согревании крови в теплообменнике. Наконец, газ может проникнуть в артериальную канюлю вследствие механических повреждений различных частей АИК. При крупных повреждениях наблюдаются массивные газовые эмболии с высокой летальностью [MillsN. etal., 1980; StoneW. etal , 1980]. Мы были свидетелями массивной газовой эмболии, произошедшей из-за технической ошибки, когда насос, вместо того чтобы отсасывать кровь из сердца, начал нагнетать воздух в левый желудочек.
Произошла массивная эмболия сосудов головного мозга. Больную удалось спасти, быстро охладив с помощью АЙК и проведя гипербарическую оксигенацию тотчас после доставки из операционной 0,7 МПа (7 ати). Современные фильтры, устанавливаемые на линии артериальной магистрали, не только способны задержать мелкие пузырьки газа, но эффективны и при массивной эмболии. Фильтры изготавливают из нейлона, полистера или дакрона. Размеры пор от 12 до 40 мкм.
Для инфузии кардиоплегических растворов, не содержащих крови, применяют фильтры с порами диаметром 0,2 мкм. Согласно данным литературы [HillJ. etal , 19701, микрофильтры позволили снизить летальность с 19,8 до 6,5%, а число мозговых осложнений с 31 до 4,2%. По данным A. Wilner и соавт. (1983), число неврологических осложнений было снижено до минимума при применении фильтров, у которых диаметр пор составляет 40 мкм. При использовании фильтров с порами диаметром 25 мкм осложнения практически исчезли.
Методика проведения ИК. Мониторинг
ИК требует тщательного многостороннего контроля за функциями жизненно важных органов и систем. Некоторые из показателей анестезиологи и перфузиологи получают в виде мониторинга, т.е. постоянно, другие - периодически на различных этапах операции и перфузии. Под непосредственным контролем перфузиолога находятся приборы, дающие информацию в режиме мониторинга о производительности артериального и отсасывающих насосов, температуре артериальной крови, охлаждающей и согревающей воды, циркулирующей через теплообменник. К нему же поступают данные исследования газов крови, КОС, электролитов, гематокрита, свертывающей системы крови и др. Остальные параметры — ЭЭГ, ЭКГ, среднее артериальное давление, ЦВД, температура тела (пищевод, носоглотка, прямая кишка, мисжард), диурез и т.д. - находятся под контролем анестезиолога. Следует подчеркнуть, что в процессе перфузии анестезиолог и перфузиолог постоянно обмениваются информацией.
Выбор раствора для заполнения АПК
В период освоения и внедрения ИК в клиническую практику использовали свежую гепаринизированную кровь в количестве 4 5л. Затем организационные сложности заставили клиницистов пользоваться консервированной кровью со сроком хранения до 5 дней. В дальнейшем стали очевидны опасности циркуляции в организме больших количеств чужеродной крови. Был описан «синдром гомологичной крови» [DowJ. elal., I960) с выходом плазмы из сосудистого русла, застоем и «заболачиванием» («binding») крови в системе чревных сосудов, агрегацией эритроцитов и тромбоцитов в различных областях и в первую очередь в легочных сосудах с открытом артериовенозных шутов и возникновением гиноксемии («перфузионные легкие»). Эти изменения сопровождались коагулопатней, печеночно-почечной недостаточностью, метаболическим ацидозом, снижением сурфактантной активностью и податливостью и легких и т.д. [Tobias М., 1986]. Иными словами, налицо была картина шока, достаточно полно описанная в литepaтype при переливании больших объемов крови, тяжелой травме и т.д. Решению этой проблемы способствовали гемодилюция [PanicaF., NeptuneW., 1959], совершенствование аппаратуры для ИК с меньшим объемом первичного заполнения (до 1,5 л) и большей оксигенирующей способностью. Это позволило у взрослых больных проводить перфузию без использования донорской крови [CooleyD. etal., 1962]. Целесообразность гемодилюции была подтверждена существенным снижением количества осложнений со стороны легких, свертывающей системы крови [LitwakR. etal., 1965], улучшением тканевой перфузии, диуреза, уменьшением числа почечных осложнений
8-09-2015, 22:10