1.3.2 Аудиометр автоматизированный АА-02 (поликлинический)
Аудиометр автоматизированный АА-02 предназначен для оценки функционального состояния слухового анализатора человека путем определения порогов слышимости по воздушному и костному звукопроведению методом сравнения слуха обследуемого с характеристиками, эквивалентными порогу слышимости отологически нормального человека.
Аудиометр АА-02 по функциональным возможностям относится к аудиометрам типа 3 по ГОСТ 27072 -86 и может использоваться для диагностики слуха в различных медицинских учреждениях.
Конструктивно аудиометр АА-02 выполнен в пластмассовом корпусе OKW, имеет клавиатуру пленочного типа с тактильным эффектом, индикацию режимов работы и результатов обследования на ЖК-дисплее. Аудиометр прост в управлении, имеет небольшой вес и габариты.
Функциональные возможности аудиометра АА-02
определение потерь слуха при воздушном и костном звукопроведении
маскировка неисследуемого уха широкополосным или узкополосным шумом
два режима работы:
ручной - с участием медицинского персонала автоматизированный - по встроенной программе
проведение 4-х надпороговых тестов:
ИМПИ (SISI) - индекс малых приростов интенсивности,
дифференциальный порог (ДП) по Luscher,
уровень (порог) дискомфорта,
тест распада тона (адаптации, Carhart).
программирование процедуры обследования в автоматизированном режиме работы (позволяет выбрать частоты, на которых будет проводиться обследование, провести скрининговое обследование)
индикация подачи тестового сигнала
индикация текущих параметров сигнала и ответов пациента
звуковая сигнализация о завершении процесса обследования в автоматизированном режиме работы
воспроизведение результатов обследования на индикаторе
возможность подключения термопринтера или компьютера
Технические параметры аудиометра АА-02
Воздушное звукопроведение
частоты: (погрешность установки +1%) |
125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Гц |
уровни прослушивания: (шаг 5 дБ) |
от -10 до 110 дБ на 500...4000 Гц от -10 до 80 дБ на 125 Гц от -10 до 95 дБ на 250 Гц от -10 до 100 дБ на 8000Гц |
погрешность установки уровня прослушивания: | +3 дБ на 125... 4000 Гц +5 дБ на 6000 и 8000 Гц |
погрешность разницы уровней прослушивания для двух соседних ступеней |
+1 дБ |
ослабление тонального сигнала при его выключении | не менее 95 дБ |
коэффициент гармоник тонального сигнала при максимальном уровне прослушивания | не более 2% |
Костное звукопроведение
частоты (погрешность установки +1%): | 250, 500, 750, 1000, 1500, 2000, 3000, 4000 Гц |
уровни прослушивания:(шаг 5 дБ, погрешность установки +3 дБ) | от -10 до 60 дБ на 500...4000 Гц от -10 до 40 дБ на 250 Гц |
погрешность разницы уровней прослушивания для двух соседних ступеней | +1 дБ |
ослабление тонального сигнала при его выключении | не менее 75 дБ |
коэффициент гармоник тонального сигнала при максимальном уровне прослушивания | не более 5% |
Маскирующий шум
уровни прослушивания широкополосного шума (шаг 5 дБ): | от 0 до 110 дБ |
уровни прослушивания узкополосного шума (шаг 5 дБ): | от 0 до 105 дБ на 500...3000 Гц от 0 до 65 дБ на 125 Гц от 0 до 85 дБ на 250, 6000, 8000 Гц от 0 до 95 дБ на 4000 Гц |
Общие характеристики
питание: от сети переменного тока 220В+22В, 50 Гц
потребляемая мощность: не более 30 ВА
габаритные размеры: 230х130х225 мм
масса: не более 2 кг
Подключение термопринтера или компьютера к аудиометру АА-02
Термопринтер позволяет выводить на печать аудиограмму непосредственно после обследования пациента. Подключение термопринтера к аудиометру производится с помощью устройства интерфейсного.
Компьютер, после установки на него программы обработки результатов аудиометрических обследований, дает возможность создавать базу данных пациентов, отображать результаты обследований на экране монитора и распечатывать их на любом принтере, подключенном к компьютеру. База данных состоит из набора индивидуальных карточек пациентов, разбитых на картотеки по произвольному признаку. В каждой карточке содержатся сведения о пациенте (ФИО, пол, год рождения, адрес, место работы) и сведения о пройденных им обследованиях (дата обследования, аудиограмма, заключение врача). Программа обработки очень проста в освоении и требует минимальных навыков в работе с компьютером. Программа имеет два основных рабочих окна - "Картотека" и "Обследование".
Рисунок 1. Вид окна "Картотека". Щелкните на картинке для увеличения
Окно "Картотека" (рис. 1) служит для создания карточки нового пациента, изменения данных в имеющейся карточке, удаления данной карточки из картотеки и перехода для работы в окно "Обследование".
В окне "Обследование" производится просмотр аудиограмм, составление заключения, запись и вывод на печать результатов текущего обследования, а также просмотр и вывод на печать результатов любого из записанных раннее обследований.
Подключение компьютера к аудиометру производится с помощью устройства интерфейсного.
Требования к компьютеру:
операционная система Windows 98/2000/XP
наличие свободного СОМ-порта
разрешение экрана монитора 800х600 или 1024х768
Комплект поставки
Аудиометр
Телефон аудиометрический ТА-01
Вибратор аудиометрический ВА-01
Кнопка пациента
Шнур сетевой
Руководство по эксплуатации
Бланк аудиограммы
Дополнительное оборудование
Термопринтер, в том числе:
термопринтер DPU-414
сетевой адаптер
устройство интерфейсное АА-02
кабель
термобумага
руководство пользователя
Комплект для работы с компьютером, в том числе:
дискета с программой АА-02
устройство интерфейсное АА-02
кабель
руководство пользователя
ВОЗМОЖНОСТИ ДИАГНОСТИКИ
Aудиологическая лаборатория проводит самые современные исследования слуховой функции с использованием двух- и многокомпонентной тимпанометрии (исследование функции барабанной перепонки), аудиометрии в расширенном диапазоне частот, УЗВ и другие сложные объективные методы исследования слуха больного.
Проводится транскраниальная импульсная биполярная электростимуляция головного мозга — воздействие на головной мозг и внутричерепные нервы сквозь кости черепа электроимпульсами (один из методов лечения снижения слуха). Все методы исследования направлены на раннюю диагностику нарушений слуха и возможную их коррекцию.
Вестибулологическая лаборатория, исследующая состояние органа равновесия, оснащена оборудованием для проведения комплексного вестибулологического исследования, т.е. исследования функции равновесия. С помощью этих исследований проводится диагностика ранних вестибулярных поражений и их уровня, а также разрабатываются комплексы реабилитационных мероприятий.
В микроэндоскопической лаборатории проводятся различные эндоскопические вмешательства при заболеваниях носа и околоносовых пазух, а также на слезно-носовых путях. Кроме того, изучаются этиологические и патологические иммунологические механизмы формирования различных заболеваний ЛОР-органов и их осложнений (хронический тонзиллит, фурункул носа, синуситы, ото- и риногенные внутричерепные осложнения). [4]
Оптимальный алгоритм диагностики нарушений слуха в лечебно-профилактических учреждениях
Клиническая аудиология в настоящее время располагает большим фактическим материалом по дифференциально диагностическим методам исследования слуховой функции. Не касаясь систематизации накопленных фактов,нам представляется целесообразным охарактеризовать диагностическую информативность того или иного аудиометрического теста, наиболее часто используемого в лечебно-диагностических учреждениях г.Москвы. Как известно, начальным звеном любого диагностического исследования является стандартная тональная пороговая аудиометрия, в диапазоне частот 125-8000 Гц. Аудиометрия должна проводиться на калиброванном аудиометре. Учитывая субъективный характер исследования, тональную пороговую аудиометрию целесообразно перепроверять камертональными тестами. Не загружая больного, с этой целью достаточно проведение двух камертональных тестов-это опыт Федеричи и опыт Вебера.
При этом не следует забывать,что положительным опыт Федеричи выпадает при нейросенсорной тугоухости и отрицательным – при кондуктивной тугоухости с костно-воздушным интервалом, превышающим 20 дБ. Латерализация звука в опыте Вебера при кондуктивной тугоухости будет происходить в хужеслышащее ухо, а при нейросенсорной тугоухости – в лучшеслышащее ухо.
Таким образом,уже тональная пороговая аудиометрия и камертональные опыты позволяют определить характер тугоухости: кондуктивная, смешанная или кохлеарная.
При возрастной инволюции слуха и при развитии нейросенсорной тугоухости в первую очередь страдает высокочастотный диапазон (8-20 кГц), поэтому для раннего выявления слуховых нарушений оправдано применение аудиометрии в расширенном диапазоне частот. Такие исследования проводятся только по воздушному звукопроведению, т.к. костные вибраторы коммерческих аудиометров, ввозимых в нашу страну, ограничены частотным диапазоном до 8 кГц. Однако не следует забывать, что впервые исследование слуховой чувствительности в расширенном диапазоне частот по костному звукопровеению было осуществлено Б.М. Сагаловичем и О.И. Симбирцевой в лаборатории патофизиологии и акустики МНИИ уха, горла и носа МЗ РФ. Диагностическая ценность этих методов подтверждена многочисленными исследованиями. Для определения топики слуховых нарушений необходимо опредление слуховой чувствительности к ультразвуку по методу Б.М. Сагаловича. Метод позволяет дифференцировать истинную нейросенсорную тугоухость и вторичную (псевдонейросенсорную), различные виды кондуктивной тугоухости, а также гидропс лабиринта.
Из надпороговых исследований наиболее информативным является метод определения порогов слухового дискомфорта и речевая аудиометрия с определеним порога недифференцированной речи, 50% разборчивости речи,100% разборчивости речи и разборчивости речи при максимальном звучании речевого сигнала с целью выявления скрытого ФУНГа. Методы, обеспечивают дифференциальную диагностику кохлеарных, ретрокохлеарных и кондуктивных нарушений. Включение объективных методов исследования слуховой функции в диагностический алгоритм должно обосновываться конкретными задачами. Для раннего выявления слуховой недостаточности у новорожденных – регистрация вызванной отоакустической эмиссии и слуховых вызванных потенциалов. Для раннего выявления кондуктивной тугоухости различного генеза – акустическая импедансометрия и т.д.
Итак, многолетний опыт работы, позволяет нам очертить диагностический алгоритм, необходимый для адекватной диагностики слуховых нарушений. Это пороговая аудиометрия, в стандартном и расширенном диапазоне частот, камертональные пробы Федеричи и Вебера., определение слуховой чувствительности к ультразвуку, а также регистрация порогов слухового дискомфорта, речевая аудиометрия. Включение объективных методов исследования в диагностический алгоритм должно осуществляться по строгим показаниям.
Описанный диагностический алгоритм слуховых нарушений может проводиться как в стационарных, так и в амбулаторных условиях г.Москвы с учетом достаточного технического оснащения лечебно-диагностических учреждений.
Возможности доклинической диагностики поражения органа слуха на основе регистрации вызванной отоакустической эмиссии.
Особое место в диагностике состояния слухового анализатора в настоящее время занимают объективные методы исследования слуха, новейшим и перспективным из которых является регистрация и анализ вызванной отоакустической эмиссии, феномен которой открыт Д.Кемпом в 1978 г. Ранее существовавшие объективные методы не позволяли непосредственно судить о функциональном состоянии наружных волосковых клеток и гидромеханике улитки, и только регистрация отоакустической эмиссии дает возможность прицельного изучения этих важнейших аспектов, так как основная роль в ее генерации принадлежит электромеханической активности наружных волосковых клеток.
В клинической практике используют, в основном, различные классы вызванной отоакустической эмиссии, в частности, задержанную вызванную отоакустическую эмиссию (ЗВОАЭ), которая представляет собой акустический сигнал, излучаемый, в основном на 8-12 мс после включения акустической стимуляции и продолжающийся 10-30 мс. Однако, вопрос о критериях оценки и даже выявляемости ЗВОАЭ до настоящего времени не получил окончательного разрешения. Было обследовано 58 нормально слышащих лиц в возрасте от 17 до 70 лет. Средняя суммарная амплитуда ЗВОАЭ составила 5,39?1,19 дБ уровня звукового давления (УЗД). Разброс абсолютных значений суммарной амплитуды ЗВОАЭ оказался весьма значительным: от 22,8 дБ УЗД до –10 дБ УЗД. Принимая во внимание в качестве общепринятого критерия достоверности наличия ЗВОАЭ значение суммарной амплитуды 3 дБ УЗД, общая выявляемость ЗВОАЭ составила 89,66% (по литературным данным - от 70 до 100%). С целью выявления возможных возрастных различий параметров ЗВОАЭ обследованные были разделены на две возрастные группы: от 17 до 49 лет (1-я группа - 35 человек) и от 50 до 70 лет (2-я группа – 23). Анализ данных регистрации ЗВОАЭ показал, что различие значений выявляемости и средней суммарной амплитуды между возрастными группами статистически недостоверно (р?0,05). Учитывая факт значительного межиндивидуального разброса абсолютных значений суммарной амплитуды вне зависимости от возраста, этот параметр вряд ли может рассматриваться в качестве критерия ЗВОАЭ. Сходные результаты получены при анализе параметров отдельных частотных компонентов ЗВОАЭ (0,5; 1,0; 2,0 и 4,0 кГц). Учитывая это обстоятельство, мы предприняли исследование влияния подавления феномена ЗВОАЭ в ответ на ипсилатеральную акустическую стимуляцию.
В качестве стимула использовался широкополосный щелчок, в качестве маскера – чистые тоны частотой от 0,5 до 4,0 кГц интенсивностью от 10 до 45 дБ нПС, предъявляемые как одномоментно со стимулом, так и предшествующие ему с интервалом 3 мс. Полученные результаты использовали для построения настроечных кривых (НК) изосуппрессии. В результате анализа усредненных НК суммарной амплитуды и амплитуды отдельных частотных компонентов ЗВОАЭ выявлены их характерные особенности для каждой возрастной группы. Обнаружены существенные отличия показателей предшествующей маскировки по сравнению с одновременной и в каждом случае – между возрастными группами. Они касались интенсивности маскирующих тонов, необходимых для достижения 50%-ной суппрессии ЗВОАЭ, ширины НК, соответствия пиков НК определенным частотам маскирующих тонов.
В тех наблюдениях, когда профиль НК изосуппрессии не соответствовал возрастной группе (сужен частотный диапазон НК, пики НК смещены в низкочастотную часть спектра маскирующих тонов, увеличена интенсивность маскирующих тонов, необходимых для достижения 50%-ной суппрессии амплитуды ЗВОАЭ) или тест ЗВОАЭ был недостоверен при наличиии аудиометрических кривых, соответствующих возрастной норме, можно думать о возможной доклинической форме сенсоневральной тугоухости.
Как измерить остроту слуха?
Проблема
Дефекты слуха, возникающие из-за врожденных аномалий, болезней, преклонного возраста, - сущий бич для миллионов людей. Для многих из них единственным средством помощи остается слуховой аппарат - нехитрое электронное устройство, предназначенное для усиления звука. Но беда в том, что, усиливая громкость звука, слуховые аппараты не делают его более разборчивым: многие владельцы слуховых аппаратов жалуются, что слышат звук, но ничего не могут разобрать в той какофонии, которая слышится из наушника, не могут понять речь собеседника, выделить ее из фоновых шумов. И это вовсе не из-за плохого качества аппарата, а из-за принципиальной проблемы: слуховые усилители компенсируют потерю чувствительности слуха, но не потерю его разрешающей способности, т.е. способности различать звуки. А именно эта способность больше всего страдает при дефектах слуха.
Чтобы создавать приборы, которые могут не только усиливать звуки, но и обеспечивать сносную возможность их различения, нужна, помимо прочего, точная диагностика: измерение как чувствительности, так и разрешающей способности слуха пациента. Что касается чувствительности, то здесь нет проблем: аудиометр - прибор для тестирования чувствительности слуха - есть в любом приличном аудиологическом кабинете. С измерением же разрешающей способности дело обстоит куда хуже. До сих пор основным методом оценки этого свойства слуха остается так называемая речевая аудиометрия. Всякий, кто бывал на обследовании у отоларинголога, знает, что это такое. Врач шепчет какие-то слова и просит пациента повторить их. Может пациент повторять слова - слух хорош, не может - плох. Достоинство такой процедуры - ее простота, но больше ничего хорошего в ней, пожалуй, нет. Ведь успешность повторения слов зависит не только от остроты слуха пациента, но и от дикции врача, используемых слов (одни звуки распознаются легче, другие - труднее), знакомства пациента с набором слов (можно угадать слово по его части) и множества других причин, к слуху никак не относящихся. Конечно, можно использовать записанные на магнитофон стандартные наборы слов, произносимых профессиональными дикторами, с выверенной громкостью. Но все это - полумеры. Ведь такой способ в принципе не дает оценку разрешающей способности слуха в строгих физических единицах.
Между тем для современной физиологии вовсе не секрет, чем обусловлена разрешающая способность слуха. Орган слуха начинает анализ звуков с того, что разлагает их на составляющие частоты. Чувствительные слуховые клетки настроены каждая на свою частоту: если сигнал содержит некоторую частоту звуковых колебаний, то откликается соответствующая группа клеток. Чем острее частотная настройка, тем тоньше, детальнее анализ. При многих дефектах слуха острота частотной настройки падает, из-за этого и снижается способность отличать одну частоту от другой, один звук от другого, сигнал от шума.
Все это известно. И есть способы измерения остроты частотной настройки слуха. Большинство из них основано на эффекте маскировки, суть которого проста. При одновременном включении двух звуковых сигналов - тихого и громкого - тихий звук (тест) будет заглушен, замаскирован громким (маскером). Но эффективность маскировки зависит от соотношения частот маскера и теста. Если эти частоты близки, то маскировка происходит даже при не очень большой громкости маскера, потому что и маскер, и тест воздействуют на одни и те же чувствительные клетки. Когда частоты различны, маскировка слабее, и чтобы заглушить тест, нужен намного более громкий маскер. Если показать на графике, как эффективность маскировки зависит от частоты, то получится V- образная кривая (рис.1); она-то и показывает остроту частотной настройки: чем кривая уже, тем настройка острее. А для полноты картины нужно построить много таких кривых, используя разные тестовые частоты. Вообще-то в современных исследованиях используются разные, в том числе весьма изощренные, сигналы со сложным частотным составом, но основной принцип метода именно таков. Если же известно, как измерить остроту частотной настройки слуха, то почему это не применяется на практике? Видимо, вследствие громоздкости метода. Измерения такого рода называют многоточечными, потому что для получения одного значения остроты частотной настройки нужно выполнить много измерений, чтобы по полученным точкам провести кривую, как на рис.1, и оценить ширину этой кривой. А ведь каждая точка кривой тоже добывается в результате многих проб, в которых испытывают маскеры разной громкости. И кривых таких нужно получить не одну, а несколько (на разных тестовых частотах). В результате объем измерений растет, как снежный ком. Для исследовательских целей, когда можно многократно работать с постоянными испытуемыми, постепенно накапливая необходимый объем данных, это приемлемо. Но в практических условиях затевать такую канитель, чтобы обследовать слух у пациента, - мало реально.
Рис.1
Кривые, построенные по результатам измерения остроты частотной настройки слуха методом маскировки. На кривой (в центре) показано, с какой интенсивностью должен звучать маскирующий сигнал для того,
8-09-2015, 19:57